题目描述

给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权。其中lastans是上一个询问的答案,初始为0,即第一个询问的u是明文。

输入输出格式

输入格式:

第一行两个整数N,M。

第二行有N个整数,其中第i个整数表示点i的权值。

后面N-1行每行两个整数(x,y),表示点x到点y有一条边。

最后M行每行两个整数(u,v,k),表示一组询问。

输出格式:

M行,表示每个询问的答案。

输入输出样例

输入样例#1:

8 5
105 2 9 3 8 5 7 7
1 2
1 3
1 4
3 5
3 6
3 7
4 8
2 5 1
0 5 2
10 5 3
11 5 4
110 8 2
输出样例#1:

2
8
9
105
7

说明

HINT:

N,M<=100000

暴力自重。。。

题解

其实就是个很简单的主席树,只要把在序列上的建树改成在树上建就可以了

虽然我也是今天看到这道题看完题解才知道怎么在树上建主席树

关于路径,可以在树上差分一下用$sum[l]+sum[r]-sum[lca]-sum[lca_fa]$

然后因为要求lca,所以在树剖dfs的时候顺便建一下主席树就好了

具体实现请参考代码

 //minamoto
#include<bits/stdc++.h>
#define N 100005
#define M 2000005
using namespace std;
#define getc() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
char buf[<<],*p1=buf,*p2=buf;
inline int read(){
#define num ch-'0'
char ch;bool flag=;int res;
while(!isdigit(ch=getc()))
(ch=='-')&&(flag=true);
for(res=num;isdigit(ch=getc());res=res*+num);
(flag)&&(res=-res);
#undef num
return res;
}
int sum[M],L[M],R[M];
int a[N],b[N],rt[N];
int fa[N],sz[N],d[N],ver[N<<],Next[N<<],head[N],son[N],top[N];
int n,q,m,cnt=,tot=,ans=;
void update(int last,int &now,int l,int r,int x){
sum[now=++cnt]=sum[last]+;
if(l==r) return;
int mid=(l+r)>>;
if(x<=mid) R[now]=R[last],update(L[last],L[now],l,mid,x);
else L[now]=L[last],update(R[last],R[now],mid+,r,x);
}
inline void add(int u,int v){
ver[++tot]=v,Next[tot]=head[u],head[u]=tot;
ver[++tot]=u,Next[tot]=head[v],head[v]=tot;
}
void dfs(int u){
sz[u]=,d[u]=d[fa[u]]+;
update(rt[fa[u]],rt[u],,m,a[u]);
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v==fa[u]) continue;
fa[v]=u,dfs(v);
sz[u]+=sz[v];
if(!son[u]||sz[v]>sz[son[u]]) son[u]=v;
}
}
void dfs(int u,int tp){
top[u]=tp;
if(!son[u]) return;
dfs(son[u],tp);
for(int i=head[u];i;i=Next[i]){
int v=ver[i];
if(v==son[u]||v==fa[u]) continue;
dfs(v,v);
}
}
int LCA(int x,int y){
while(top[x]!=top[y])
d[top[x]]>=d[top[y]]?x=fa[top[x]]:y=fa[top[y]];
return d[x]>=d[y]?y:x;
}
int query(int ql,int qr,int lca,int lca_fa,int l,int r,int k){
if(l>=r) return l;
int x=sum[L[ql]]+sum[L[qr]]-sum[L[lca]]-sum[L[lca_fa]];
int mid=(l+r)>>;
if(x>=k) return query(L[ql],L[qr],L[lca],L[lca_fa],l,mid,k);
else return query(R[ql],R[qr],R[lca],R[lca_fa],mid+,r,k-x);
}
int main(){
//freopen("testdata.in","r",stdin);
n=read(),q=read();
for(int i=;i<=n;++i)
b[i]=a[i]=read();
sort(b+,b++n);
m=unique(b+,b++n)-b-;
for(int i=;i<=n;++i)
a[i]=lower_bound(b+,b++m,a[i])-b;
for(int i=;i<n;++i){
int u=read(),v=read();
add(u,v);
}
dfs(),dfs(,);
while(q--){
int x,y,z,lca;
x=read(),y=read(),z=read();
x^=ans,lca=LCA(x,y);
ans=b[query(rt[x],rt[y],rt[lca],rt[fa[lca]],,m,z)];
printf("%d\n",ans);
}
return ;
}

bzoj2588 Spoj10628. count on a tree的更多相关文章

  1. BZOJ2588 SPOJ10628 Count on a tree 【主席树】

    BZOJ2588 Count on a tree 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中l ...

  2. 【BZOJ2588】Count On a Tree(主席树)

    [BZOJ2588]Count On a Tree(主席树) 题面 题目描述 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第 ...

  3. [bzoj2588][Spoj10628]Count on a tree_主席树

    Count on a tree bzoj-2588 Spoj-10628 题目大意:给定一棵n个点的树,m次查询.查询路径上k小值. 注释:$1\le n,m\le 10^5$. 想法:好像更博顺序有 ...

  4. 【BZOJ-2588】Count on a tree 主席树 + 倍增

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 3749  Solved: 873[ ...

  5. 【bzoj2588】Count on a tree

    Portal -->bzoj2588 Solution 不行我一定要来挂这道题qwq很气愤qwq(其实还不是因为自己蠢..) 额首先说一下正解 如果这个问题放在序列上面的话..直接离散化一下然后 ...

  6. BZOJ2588:Count on a tree——题解

    http://www.lydsy.com/JudgeOnline/problem.php?id=2588 Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你 ...

  7. 主席树+LCA【p2633 (bzoj2588】 Count on a tree

    Description 给定一棵N个节点的树,每个点有一个权值,对于M个询问(u,v,k),你需要回答u xor lastans和v这两个节点间第K小的点权.其中lastans是上一个询问的答案,初始 ...

  8. 【bzoj2588】Count on a tree 主席树

    这题给人开了个新思路. 原本构造一个序列的主席树,是这个位置用上个位置的信息来省空间,树上的主席树是继承父亲的信息来省空间. 此题若带修改怎么办? 若对某个点的权值做修改,则这个点的子树都会受影响,想 ...

  9. 【BZOJ2588】Count on a tree 题解(主席树+LCA)

    前言:其实就是主席树板子啦……只不过变成了树上的查询 -------------------------- 题目链接 题目大意:求树上$u$到$v$路径第$k$大数. 查询静态区间第$k$大肯定是用主 ...

随机推荐

  1. luogu2312 [NOIp2015]解方程 (秦九韶)

    秦九韶算法:多项式$a_0+a_1x+a_2x^2+...+a_nx^n=a_0+x(a_1+x(a_2+...+(xa_n))..)$,这样对于一个x,可以在O(n)求出结果 为了避免高精度,我们同 ...

  2. 字符串格式化format方法

    通过位置参数传参 print('{}, {}'.format('KeithTt', 18)) # KeithTt, 18 位置参数可以通过索引调用 print('{1}, {0}'.format('K ...

  3. c++纯虚函数在父类中调用的规避

    构造和析构函数不允许调用纯虚函数,可以先调用虚函数,里面再调用纯虚函数实现. class Base{public:    virtual void foo()=0;    Base() { call_ ...

  4. linux 空间释放,mysql数据库空间释放

    测试告急,服务器不行了.down了…… 1.linux如何查看磁盘剩余空间: [root@XXX~]# df -lhFilesystem        Size      Used      Avai ...

  5. JS基础:翻转数组

    var arr = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]; console.log(arr); //操作原数组,让原数组第一位和最后一个位调换位置,以此类推. for (va ...

  6. JAVA记录-redis缓存机制介绍(三)

    Redis 事务 Redis 事务可以一次执行多个命令, 并且带有以下两个重要的保证: 事务是一个单独的隔离操作:事务中的所有命令都会序列化.按顺序地执行.事务在执行的过程中,不会被其他客户端发送来的 ...

  7. Hive记录-impala常用命令

    1.impala是什么 Impala是Cloudera公司主导开发的新型查询系统,它提供SQL语义,能查询存储在Hadoop的HDFS和HBase中的PB级大数据.已有的Hive系统虽然也提供了SQL ...

  8. 小心错误使用EasyUI 让网站性能减半

    先不谈需求,和系统架构,直接上来就被抛来了一个问题----基础性能太差了,一个网页打开要好几秒.我了个天,我听了也简直不敢相信,难道是数据量特别大?还是其中业务逻辑特别复杂? 简单的介绍下,基础系统是 ...

  9. Spring RMI (Spring 远程方法调用)【原】

    所需jar包...?    不纠结,一股脑儿全导! 源码地址:http://pan.baidu.com/s/1jG8eOmy 先放结构图如下,客户端和服务端都在一个项目中.也可以把服务端的xxx导成j ...

  10. Python基础-day03

    写在前面 上课第三天,打卡:  不要让干净的灵魂染上尘埃,永远年轻.永远热泪盈眶 一.再谈编码 - 文件的概念 '文件' 是一个抽象的概念,是操作系统提供的外部存储设备的抽象,对应底层的硬盘:它是程序 ...