【数论】Prime Time UVA - 10200 大素数 Miller Robin 模板
题意:验证1~10000 的数 n^n+n+41 中素数的个数。每个询问给出a,b 求区间[a,b]中质数出现的比例,保留两位
题解:质数会爆到1e8 所以用miller robin ,
另外一个优化是预处理
一个坑是四舍五入卡精度。
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<algorithm>
#include<iostream>
#include<math.h>
#include<ctime>
using namespace std;
typedef long long ll;
const int MAXN = + + ;
const int maxn = MAXN;
#define rep(i,t,n) for(int i =(t);i<=(n);++i)
#define per(i,n,t) for(int i =(n);i>=(t);--i)
#define mmm(a,b) memset(a,b,sizeof(a))
int phi[MAXN], prime[MAXN];
struct Miller_Rabin
{
int prime[] = { ,,,, };
ll qmul(ll x, ll y, ll mod) {
ll ans = (x*y - (ll)((long double)x / mod * y + 1e-)*mod);
ans = (ans%mod + mod) % mod;
return ans;
}
ll qpow(ll x, ll n, ll mod) {
ll ans = ;
while (n) {
if (n & ) ans = qmul(ans, x, mod);
x = qmul(x, x, mod);
n >>= ;
}
return ans;
}
bool isprime_std(ll p) {
if (p < ) return ;
if (p != && p % == ) return ;
ll s = p - ;
while (!(s & )) s >>= ;
for (int i = ; i < ; ++i) {
if (p == prime[i]) return ;
ll t = s, m = qpow(prime[i], s, p);
while (t != p - && m != && m != p - ) {
m = qmul(m, m, p);
t <<= ;
}
if (m != p - && !(t & )) return ;
}
return ;
}
bool isprime(ll p) {
if (p< || (p != && p % == )) return false;
for (int i = ; i < ; ++i)
{
if (p == prime[i]) return true;
ll t = qpow(prime[i], p - , p);
if (t != ) return false;
}
return true;
}
}mr;
int tot;
void get_phi()
{
phi[] = ;
for (int i = ; i <= MAXN - ; i++) {
if (!phi[i]) {
phi[i] = i - ;
prime[++tot] = i;
}
for (int j = ; j <= tot && 1LL * i*prime[j] <= MAXN - ; j++) {
if (i%prime[j]) phi[i*prime[j]] = phi[i] * (prime[j] - );
else {
phi[i*prime[j]] = phi[i] * prime[j];
break;
}
}
}
}
int isntp[maxn];
void sieve(int n) {
int m = (int)sqrt(n + 0.5);
mmm(isntp, );
rep(i, , m)if (!isntp[i])for (int j = i * i; j <= n; j += i)isntp[j] = ; }
int ans[maxn];
int s[maxn];
int smain();
//#define ONLINE_JUDGE
int main() { //ios::sync_with_stdio(false);
#ifndef ONLINE_JUDGE
FILE *myfile;
myfile = freopen("C:\\Users\\acm-14\\Desktop\\test\\b.in", "r", stdin);
if (myfile == NULL)
fprintf(stdout, "error on input freopen\n");
FILE *outfile;
outfile = freopen("C:\\Users\\acm-14\\Desktop\\test\\out.txt", "w", stdout);
if (outfile == NULL)
fprintf(stdout, "error on output freopen\n");
long _begin_time = clock();
#endif
smain();
#ifndef ONLINE_JUDGE
long _end_time = clock();
printf("time = %ld ms.", _end_time - _begin_time);
#endif
return ;
}
int smain()
{ int t;
int a, b; s[] = ;
rep(i, , 1e4) {
if (mr.isprime_std(i * i + i + ))s[i] = s[i - ] + ;
else s[i] = s[i - ];
}
while (cin >> a >> b)
{
int cnt = ;
/*rep(i, a, b) {
if (i * i + i + 41 < 1e7) {
if (isntp[i * i + i + 41] == 0)cnt++;
else if(mr.isprime(i * i + i + 41))cnt++;
}
}*/
cnt = s[b];
if (a != )cnt -= s[a - ];
double ans = (double)cnt / (double)(b - a + ) * ;
ans = (double)((int)(ans + 0.50000001)); printf("%.2lf\n", ans/);
}
//cin >> t;
return ;
}
/*
0 39
0 40
39 40
*/
【数论】Prime Time UVA - 10200 大素数 Miller Robin 模板的更多相关文章
- Prime Time UVA - 10200(精度处理,素数判定)
Problem Description Euler is a well-known matematician, and, among many other things, he discovered ...
- [ACM] POJ 2689 Prime Distance (筛选范围大素数)
Prime Distance Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12811 Accepted: 3420 D ...
- Project Euler 97 :Large non-Mersenne prime 非梅森大素数
Large non-Mersenne prime The first known prime found to exceed one million digits was discovered in ...
- FZU 1649 Prime number or not米勒拉宾大素数判定方法。
C - Prime number or not Time Limit:2000MS Memory Limit:32768KB 64bit IO Format:%I64d & % ...
- Miller Robin大素数判定
Miller Robin算法 当要判断的数过大,以至于根n的算法不可行时,可以采用这种方法来判定素数. 用于判断大于2的奇数(2和偶数需要手动判断),是概率意义上的判定,因此需要做多次来减少出错概率. ...
- POJ 1811 大素数判断
数据范围很大,用米勒罗宾测试和Pollard_Rho法可以分解大数. 模板在代码中 O.O #include <iostream> #include <cstdio> #inc ...
- Miller_Rabbin大素数测试
伪素数: 如果存在和n互素的正整数a满足a^(n-1)≡1(mod n),则n是基于a的伪素数. 是伪素数但不是素数的个数是非常非常少的,所以如果一个数是伪素数,那么他几乎是素数. Miller_Ra ...
- 计蒜客 18492.Upside down primes-米勒拉宾判大素数 (German Collegiate Programming Contest 2015 ACM-ICPC Asia Training League 暑假第一阶段第三场 K)
K. Upside down primes 传送门 这个题就是把大数按字符串输进去,判断一下是不是素数,然后反转180度,先判断反转之后的东西是不是一个数,如果是的话,再把这个数判一下是不是素数,如果 ...
- 重复造轮子之RSA算法(一) 大素数生成
出于无聊, 打算从头实现一遍RSA算法 第一步, 大素数生成 Java的BigInteger里, 有个现成的方法 public static BigInteger probablePrime(int ...
随机推荐
- JAVA代码实现多级树结构封装对象
树结构在开发中经常遇到.例如:部门.菜单.员工架构等等.下面用部门作为例子构造部门结构树 1.部门表:dept -- ---------------------------- -- Table str ...
- 第三部分:Android 应用程序接口指南---第二节:UI---第十一章 样式和主题
第11章 样式和主题 style是用于指定View或window的外观和格式的一系列属性的集合.style可以指定高(height).填补(padding).字体颜色.字体大小.背景颜色等等属性.st ...
- 不同局域网中同一IP地址的计算机怎么通信的
1.IP地址在192.--.255之内的是私有地址,即192.168.1.56的电脑a是不能直接与192.168.1.56的电脑b进行通信的.他们需要用到NAT技术,即网络地址转换.2.NAT的作用是 ...
- [Big Data - Suro] Netflix开源数据流管理器Suro
Netflix近日开源了一个叫做Suro的工具,公司可以利用它来做数据源主机到目标主机的实时定向.它不只在Netflix的数据管道上扮演重要角色,大规模下的应用场景同样令人印象深刻. Netflix各 ...
- linux每日命令(34):ps命令和pstree命令
Linux中的ps命令是Process Status的缩写.ps命令用来列出系统中当前运行的那些进程.ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信 ...
- idea debug info can be unavailable. Please close other application using ADB: Monitor, DDMS, Eclipse
开发android debug时 报错 解决方法 Kill adb 关闭 设备监视器
- Future 模式简介
简介 Future 模式是多线程开发中的一种常见设计模式,它的核心思想是异步调用. 比如我们在网上购物,付款后就会产生一个订单,之后你该干嘛干嘛,快递小哥会上门送货,而不必像在超市结账那样,付款后要等 ...
- InstrumentDriver,对iOS自动化测试说 Yes!
InstrumentDriver 是 Mobile自动化小组最近实现的基于 instrument,针对 iOS 的自动化测试框架,目前支持 java 语言编写测试用例. 研究过iOS自动化测试的同学肯 ...
- Ubuntu16.04搭建Postfix作为SMTP服务器
一.DNS配置 类型 名称 值 TTL A mail 128.199.254.32 1小时 MX @ mail.example.com(优先:10) 1小时 TXT @ v=spf ...
- 【转】在xcode5中修改整个项目名
本文转载自:http://www.cnblogs.com/tbfirstone/p/3601541.html 总会遇到几个项目,在做到一半的时候被要求改项目名,网上找了下相关的资料,大多数是xcode ...