P3338 [ZJOI2014]力
思路
颓柿子的题目
要求求这样的一个式子
\]
令\(E_i=\frac{F_i}{q_i}\),求所有的\(E_i\)
对于Ei,显然可以
\]
前后没什么关联,可以分开考虑,首先考虑前面部分
\]
设\(f(i)=q_i\),\(g(i)=\frac{1}{i^2}\)
则前面一部分变为
\]
变成了卷积的形式
后面一部分是
\]
同理变成
\]
似乎没什么办法,但是我们可以把\(f\)整个反过来(就是\(f(1)\)与\(f(n)\)交换,与\(f(2)\)与\(f(n-1)\)交换)
设交换之后的\(f\)为\(f'\),\(f'_i=f_{n-i+1}\)
则有
\]
则原来的第i项和反转后的第\(n-i+1\)项相同
对应相减即可
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define int long long
using namespace std;
const double pi = acos(-1.0);
struct complex{//a+bi
double a,b;
complex operator + (complex &bx){
return (complex){a+bx.a,b+bx.b};
}
complex operator - (complex &bx){
return (complex){a-bx.a,b-bx.b};
}
complex operator * (complex &bx){
return (complex){a*bx.a-b*bx.b,b*bx.a+a*bx.b};
}
complex conj(void){
return (complex){a,-b};
}
};
int n;
double q[401000],ans[401000];
complex inv[401000],wnk[401000],a[401000],b[401000];
void init(int len){
for(int i=0;i<len;i++){
wnk[i]=(complex){cos(2*pi*i/len),sin(2*pi*i/len)};
inv[i]=wnk[i].conj();
}
}
void FFT(complex *a,complex *opt,int n){
int lim=0;
while((1<<lim)<n){
lim++;
}
n=(1<<lim);
for(int i=0;i<n;i++){
int t=0;
for(int j=0;j<lim;j++)
if((i>>j)&1)
t|=(1<<(lim-j-1));
if(t<i)
swap(a[i],a[t]);
}
for(int i=2;i<=n;i<<=1){
int len=i/2;
for(complex *j=a;j!=a+n;j+=i){
for(int k=0;k<len;k++){
complex t=j[k+len]*opt[n/i*k];
j[k+len]=j[k]-t;
j[k]=j[k]+t;
}
}
}
}
void Do_FFT(int n){
int lim=0;
while((1<<lim)<n){
lim++;
}
n=(1<<lim);
init(n);
FFT(a,wnk,n);
FFT(b,wnk,n);
for(int i=0;i<n;i++)
a[i]=a[i]*b[i];
FFT(a,inv,n);
for(int i=0;i<n;i++)
a[i].a/=n;
}
signed main(){
// freopen("1.in","r",stdin);
// freopen("test.out","w",stdout);
scanf("%lld",&n);
for(int i=1;i<=n;i++){
scanf("%lf",&q[i]);
}
for(int i=1;i<=n;i++){
a[i].a=q[i];
b[i].a=1.0/(i*i);
a[i].b=0;
b[i].b=0;
}
Do_FFT(2*n+4);
for(int i=1;i<=n;i++)
ans[i]=a[i].a;
memset(a,0,sizeof(a));
memset(b,0,sizeof(b));
for(int i=1;i<=n;i++){
a[i].a=q[i];
b[i].a=1.0/(i*i);
a[i].b=0;
b[i].b=0;
}
for(int i=1,j=n;i<j;i++,j--)
swap(a[i],a[j]);
Do_FFT(2*n+4);
for(int i=1;i<=n;i++)
ans[i]-=a[n-i+1].a;
for(int i=1;i<=n;i++)
printf("%.3lf\n",ans[i]);
return 0;
}
P3338 [ZJOI2014]力的更多相关文章
- 洛谷 P3338 [ZJOI2014]力 解题报告
P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j ...
- [洛谷P3338] [ZJOI2014]力
洛谷题目链接:P3338 [ZJOI2014]力 题目描述 给出n个数qi,给出Fj的定义如下: \[F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_ ...
- P3338 [ZJOI2014]力(FFT)
题目 P3338 [ZJOI2014]力 做法 普通卷积形式为:\(c_k=\sum\limits_{i=1}^ka_ib_{k-i}\) 其实一般我们都是用\(i=0\)开始的,但这题比较特殊,忽略 ...
- [Luogu P3338] [ZJOI2014]力 (数论 FFT 卷积)
题面 传送门: 洛咕 BZOJ Solution 写到脑壳疼,我好菜啊 我们来颓柿子吧 \(F_j=\sum_{i<j}\frac{q_i*q_j}{(i-j)^2}-\sum_{i>j} ...
- P3338 [ZJOI2014]力 /// FFT 公式转化翻转
题目大意: https://www.luogu.org/problemnew/show/P3338 题解 #include <bits/stdc++.h> #define N 300005 ...
- luogu P3338 [ZJOI2014]力
传送门 首先化简原式\[F_j=\sum_{i<j}\frac{q_iq_j}{(i-j)^2}-\sum_{i>j}\frac{q_iq_j}{(i-j)^2},E_j=F_j/q_j\ ...
- 洛咕 P3338 [ZJOI2014]力
好久没写过博客了.. 大力推式子就行了: \(E_i=\sum_{j<i}\frac{q_j}{(i-j)^2}+\sum_{j>i}\frac{q_j}{(j-i)^2}\) 那么要转化 ...
- 洛谷P3338 [ZJOI2014]力(FFT)
传送门 题目要求$$E_i=\frac{F_i}{q_i}=\sum_{j=1}^{i-1}\frac{q_j}{(i-j)^2}-\sum_{j=i+1}^n\frac{q_j}{(j-i)^2}$ ...
- [Luogu]P3338 [ZJOI2014]力(FFT)
题目描述 给出\(n\)个数\(q_i\),给出\(F_j\)的定义如下: \(F_j = \sum_{i<j}\frac{q_i q_j}{(i-j)^2 }-\sum_{i>j}\fr ...
随机推荐
- js切换背景颜色
我将全部的代码上传到了github,你可以下载查看 <!-------change the background color--------------> <script> f ...
- hdu3879 最大权闭合回路
题意: 有n个基站可以建立,然后m个团体会使用这些基站进行工作,地i个团体会适应Ai Bi 这两个基站, 如果建成收益Ci, 第j个基站花费Pj,求如何建立使得收益最大, 将每个团体看以一个点,然后 ...
- Keep On Movin (贪心)
#include<bits/stdc++.h> using namespace std; int main(){ int T, n, a;scanf("%d",& ...
- codeforces 979B Treasure Hunt
题意: 给出三个字符串,每个字符串长度相同,给出n,要求在n轮内,每一个字符串必须改变一个字符. 问最后哪个字符串中拥有最多相同的字符,即美丽度最大. 思路: 首先,很不容易想到的一点是从a变到a,有 ...
- 20155228 2016-2017-2 《Java程序设计》第2周学习总结
20155228 2006-2007-2 <Java程序设计>第2周学习总结 教材学习内容总结 类型 Java可以区分为基本类型和类类型(或称参考类型).对于基本类型,使用时得考虑一下数据 ...
- 使用Groovy+Spock构建可配置的订单搜索接口测试用例集
概述 测试是软件成功上线的安全网.基本的测试包含单元测试.接口测试.在 "使用Groovy+Spock轻松写出更简洁的单测" 一文中已经讨论了使用GroovySpock编写简洁的单 ...
- sqlyog下载
sqlyog下载(附注册码):http://www.onlinedown.net/soft/24926.htm
- 用Javascript,DHTML控制表格的某一列的显示与隐藏
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.or ...
- [转载]asp.net中,<%#%>,<%=%>和<%%>分别是什么意思,有什么区别
在asp.net中经常出现包含这种形式<%%>的html代码,总的来说包含下面这样几种格式: 一. <%%> 这种格式实际上就是和asp的用法一样的,只是asp中里面是vbsc ...
- 苹果手机显示分享链接的方法html页面
function onBridgeReady(){ WeixinJSBridge.call('showOptionMenu'); } if (typeof WeixinJSBridge == &quo ...