神仙的博客,先copy了日后绝对删掉的,(因为我实在没耐心看懂啊..)

题解

step 1理解题意

在做这道题之前,一定要理解好题意,有一个需要特别注意注意的地方:

青蛙不是一定要跳到石头上[嗯...这一点坑了我好久]而是指青蛙尽量不踩石头的情况下还要跳到多少个石头上[语文渣求原谅]。

step 2状态转移方程

这是一个比较简单方程式。

首先设f[i]为在i点上的最少踩石子数则在前面(i-s)到(i-t)的点都可以改变i点的值,因此我们可以取f[i-s]-f[i-t]之中的最小值,另外如果有石头就加上1,如果没有就不加值,这里我们直接用flag[i]表示该点有无石头(有则为1,无则为0)。

因此我们可以写出状态转移方程式: f[i]=min⁡(f[i−j]+flag[i]∣s<=j<=t)f[i]=\min(f[i-j]+flag[i]|s<=j<=t)f[i]=min(f[i−j]+flag[i]∣s<=j<=t)

step 3路径压缩

实际上,这题还没完呢...如果我们定义一个f[10^9]的数组,这肯定是会爆内存的——所以...[我就放弃了这道题][额,可能吗]..因此我们需要使用一种方法,使得这里采用一种最合适的方法——路径压缩(其实还有其他更(bu)优(kao)秀(pu)方法的),目的是要找到两石同相隔较长时直接缩短的方法。[前方高能,请数学学科恐惧症患者尽快撤离!!]:

假设每次走p或者p+1步.我们知道 gcd⁡(p,p+1)\gcd(p,p+1)gcd(p,p+1) =1.

由扩展欧几里得可知,对于二元一次方程组:

px+(p+1)y=gcd⁡(p,p+1)px+(p+1)y=\gcd(p,p+1)px+(p+1)y=gcd(p,p+1) 是有整数解的,即可得: px+(p+1)y=spx+(p+1)y=spx+(p+1)y=s 是一定有整数解的。

设 px+(p+1)y=spx+(p+1)y=spx+(p+1)y=s 的解为: x=x0+(p+1)t,y=y0−ptx=x0+(p+1)t,y=y0-ptx=x0+(p+1)t,y=y0−pt 。令 0<=x<=p0<=x<=p0<=x<=p (通过增减t个p+1来实现), s>p∗(p+1)−1s>p*(p+1)-1s>p∗(p+1)−1 ,

则有: y=s−pxp+1>=s−p2p+1>p∗(p+1)−1−pxp+1>=0y=\frac{s-px}{p+1}>=\frac{s-p^2}{p+1}>\frac{p*(p+1)-1-px}{p+1}>=0y=p+1s−px​>=p+1s−p2​>p+1p∗(p+1)−1−px​>=0

即表示,当 s>=p∗(p+1)s>=p*(p+1)s>=p∗(p+1) 时, px+(p+1)y=spx+(p+1)y=spx+(p+1)y=s 有两个非负整数解,每次走p步或者 p+1p+1p+1 步, p∗(p+1)p*(p+1)p∗(p+1) 之后的地方均能够到达。

如果两个石子之间的距离大于 p∗(p+1)p*(p+1)p∗(p+1) ,那么就可以直接将他们之间的距离更改为 p∗(p+1)p*(p+1)p∗(p+1) 。

综上,得到压缩路径的方法:若两个石子之间的距离> t∗(t−1)t*(t-1)t∗(t−1) ,则将他们的距离更改为 t∗(t−1)t*(t-1)t∗(t−1) 。

因为 t<=10t<=10t<=10 ,因此我们可以直接将大于10*9的距离直接化为90.

但是要注意,对于 s=ts=ts=t 这种特殊情况,这种方法是不成立的应为在这种情况下,每次是不能够走p+1步的,因此需要另外特殊判断。

方程如下:

f[i]=f[i−1]+(imods==0)f[i]=f[i-1]+(i \mod s ==0)f[i]=f[i−1]+(imods==0)

代码实现

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<climits>
using namespace std;
int f[10005],far[10005],a[10005],flag[10005],p,s,t,n;
int main()
{
scanf("%d",&p);
scanf("%d%d%d",&s,&t,&n);
if(s==t) //特殊情况判断
{
int cont=0,qaq;
for(int i=1;i<=n;++i)scanf("%d",&qaq),cont+=((qaq%s)==0);
printf("%d\n",cont);return 0;
}
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
sort(a+1,a+n+1);a[0]=0;f[0]=0;
far[n+1]=min(p-a[n],100);p=0; //计算终点与最后一个点的距离
for(int i=1;i<=n;i++)far[i]=min(a[i]-a[i-1],90),p+=far[i],flag[p]=1; //缩短路径,存储缩短后的终点距离并标记石头位置
p+=far[n+1];
for(int i=1;i<=p+9;i++)
{
f[i]=INT_MAX-1;
for(int j=s;j<=t;j++)if(i>=j)f[i]=min(f[i],f[i-j]+flag[i]);
}
int minn=INT_MAX-1;
for(int i=p;i<=p+9;i++) //因为青蛙可以跳出边界且t<=10因此再终点后p-p+9中取最小值
minn=min(minn,f[i]);
printf("%d",minn);
}
具体请见http://blog.csdn.net/qq_34940287/article/details/77494073
orz orz orz orz

luogu 1052 过河的更多相关文章

  1. [Luogu 1052] noip 05 过河

    [Luogu 1052] noip 05 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是 ...

  2. luogu P1809 过河问题_NOI导刊2011提高(01)

    题目描述 有一个大晴天,Oliver与同学们一共N人出游,他们走到一条河的东岸边,想要过河到西岸.而东岸边有一条小船. 船太小了,一次只能乘坐两人.每个人都有一个渡河时间T,船划到对岸的时间等于船上渡 ...

  3. luogu P1002 过河卒

    题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为“马拦过河卒”. ...

  4. Luogu P1052 过河 DP

    复习复习DP...都忘了QAQ... 好了这道题我其实是看题解才会的... 方程 f[i]=min(f[i-j]+v[i]) v[i]表示i是不是石头 s<=j<=t 路径压缩引用一下证明 ...

  5. [LUOGU] 1002 过河卒

    题目描述 棋盘上A点有一个过河卒,需要走到目标B点.卒行走的规则:可以向下.或者向右.同时在棋盘上C点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点.因此称之为"马拦过 ...

  6. 洛谷1052——过河(DP+状态压缩)

    题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙可能到达的点看成数 ...

  7. luogu P1052 过河

    传送门 容易想到设\(f_i\)表示走到坐标\(i\)的最少走过的石子数 但是这题数据范围很大,,, 不过一次可以走的步数范围是1-10,石子个数最多100个,所以中间会有很多多出来的没石子的路,可以 ...

  8. dp专练

    dp练习. codevs 1048 石子归并 区间dp #include<cstdio> #include<algorithm> #include<cstring> ...

  9. 过河-状压DP

    http://www.luogu.org/problem/show?pid=1052 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上 ...

随机推荐

  1. PSP(4.27——5.3)以及周记录

    1.PSP 4.27 11:40 18:10 125 265 Cordova A Y min 4.28 10:00 16:50 200 210 Cordova A Y min 4.29 15:30 2 ...

  2. 装CentOS 系统

    一. 二. 三. 四. 五. 六. 七. 八. 九. 十. 十一. 十二. 十三. 十四. 十五. 十六. 十七. 十八. setup设置

  3. 关于WrapPanel和RadioButton相互配合使用实WrapPanel现动态添加或删除项

    最近在做一个项目的时候,有一个需求就是,通过RadioButton来控制一行内容的显示与不显示,当不显示的时候,下面的项能够占住相应的位置,当增加的时候,又会在原来的位置重新显示,如果使用一般的Gri ...

  4. windows部分常用命令

    dir 查看内容 md 新建目录 copy 复制 del 删文件 cls 清屏 tasklist 查看运行进程 taskkill /pid xxx 杀死进程xxx taskmgr 打开任务管理器 ms ...

  5. scrapy 简单爬虫实验

    利用python的模块requests来爬取百度搜索出来的url 使用环境为python3 #!/use/bin/env python # -*- coding:utf-8 -*- import re ...

  6. BZOJ2822[AHOI2012]树屋阶梯——卡特兰数+高精度

    题目描述 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为N+1尺(N为 ...

  7. Python解惑:整数比较

    在 Python 中一切都是对象,毫无例外整数也是对象,对象之间比较是否相等可以用==,也可以用is.==和is操作的区别是: is比较的是两个对象的id值是否相等,也就是比较俩对象是否为同一个实例对 ...

  8. 【Luogu4512】多项式除法(FFT)

    题面 洛谷 题解 模板题... 我直接蒯我写的东西... 这个除法是带余除法,所以并不能直接求逆解决. 要求的就是给定两个多项式\(A(x),B(x)\),其项数为\(n,m\) 求解一个\(n-m\ ...

  9. 前端学习 -- Html&Css -- ie6 png 背景问题

    在IE6中对图片格式png24支持度不高,如果使用的图片格式是png24,则会导致透明效果无法正常显示 解决方法: 1.可以使用png8来代替png24,即可解决问题,但是使用png8代替png24以 ...

  10. EasyUI 树形菜单加载父/子节点

    通常表示一个树节点的方式就是在每一个节点存储一个 parentid. 这个也被称为邻接列表模型. 直接加载这些数据到树形菜单(Tree)是不允许的. 但是我们可以在加载树形菜单之前,把它转换为标准标准 ...