题目链接http://poj.org/problem?id=3276

题目大意:有一些牛,头要么朝前要么朝后,现在要求确定一个连续反转牛头的区间K,使得所有牛都朝前,且反转次数m尽可能小。

解题思路

首先不要看错题意了,不是求最小K,不要二分。而且反转区间长度一定是K,小于K是不能反转的。

很明显得枚举K(1...n),并且有以下反转思路:

①从第一头牛开始,如果朝前,不管了。看下一头牛,如果朝后反转K长度区间.....一直扫到区间结束。

②第一趟结束后,如果不符合要求,继续重复①,直到所有牛都朝前。

这样复杂度是O(n^3),5000*5000*5000,标准TLE。

其实确定反转次数只需要扫一趟就行了,没有必要来回多趟。O(n^2)就能解决,这里借鉴了tmeteorj的依赖关系法,非常简洁。

它的思路是这样的:

f[i]保存的当前牛与前一头牛的关系,不同1,同0。其中设置一个0牛,方向为F。

这样,如果f[i]=1,则表示[i-1,i+k-1]这个区间需要反转,其中f值变化的只有f[i]和f[i+k]。中间的值没有变化。

对于每个K,从1扫到n-k+1,如果f[i]=1则进行反转操作,反转之后变化的部分立刻反馈,这样当处理i+1时,就能保证当前状态是处理i+1的最后一趟的状态。

原因很简单,在O(n^3)的方法里,我们来回扫,不过是把值来回重复循环,毫无意义。使用这种关系依赖法之后,就可以避免这些毫无意义的循环。

对于n+k+2~n的部分,只要出现需要反转的,则本次K是无效的。继续看下一个K。

否则,更新一下ansm和ansk。

#include "cstdio"
#include "cstring"
int f[],now[],n,ansm,ansk;
int main()
{
//freopen("in.txt","r",stdin);
char key,last='F';
ansm=0x3f3f3f3f;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf(" %c",&key);
if(key!=last) f[i]=;
last=key;
}
for(int k=;k<=n;k++)
{
memcpy(now,f,sizeof(f));
int cnt=;
for(int i=;i<=n-k+;i++)
if(now[i]) {cnt++;now[i+k]^=;}
for(int i=n-k+;i<=n;i++)
if(now[i]) {cnt=0x3f3f3f3f;break;}
if(cnt<ansm) {ansm=cnt;ansk=k;}
}
printf("%d %d\n",ansk,ansm);
}
13594393 neopenx 3276 Accepted 196K 329MS C++ 648B 2014-11-03 17:24:07

POJ 3276 (开关问题)的更多相关文章

  1. 反转(开关问题) POJ 3276

    POJ 3276 题意:n头牛站成线,有朝前有朝后的的,然后每次可以选择大小为k的区间里的牛全部转向,会有一个最小操作m次使得它们全部面朝前方.问:求最小操作m,再此基础上求k. 题解:1.5000头 ...

  2. POJ 3276 Face The Right Way 翻转(开关问题)

    题目:Click here 题意:n头牛排成一列,F表示牛面朝前方,B表示面朝后方,每次转向K头连续的牛的朝向,求让所有的牛都能面向前方需要的最少的操作次数M和对应的最小的K. 分析:一个区间反转偶数 ...

  3. Face The Right Way POJ - 3276 (开关问题)

    Face The Right Way Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 6707   Accepted: 312 ...

  4. POJ 1681 (开关问题+高斯消元法)

    题目链接: http://poj.org/problem?id=1681 题目大意:一堆格子,或白或黄.每次可以把一个改变一个格子颜色,其上下左右四个格子颜色也改变.问最后使格子全部变黄,最少需要改变 ...

  5. POJ 1222 (开关问题+高斯消元法)

    题目链接: http://poj.org/problem?id=1222 题目大意:一堆开关,或开或关.每个开关按下后,周围4个方向开关反转.问使最后所有开关都关闭的,开关按法.0表示不按,1表示按. ...

  6. poj 1830 开关问题

    开关问题 题意:给n(0 < n < 29)开关的初始和最终状态(01表示),以及开关之间的关联关系(关联关系是单向的输入a b表示a->b),问有几种方式得到最终的状态.否则输出字 ...

  7. POJ 1830 开关问题(高斯消元)题解

    思路:乍一看好像和线性代数没什么关系.我们用一个数组B表示第i个位置的灯变了没有,然后假设我用u[i] = 1表示动开关i,mp[i][j] = 1表示动了i之后j也会跟着动,那么第i个开关的最终状态 ...

  8. POJ 1830 开关问题(Gauss 消元)

    开关问题 Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 7726   Accepted: 3032 Description ...

  9. POJ 1830 开关问题 【01矩阵 高斯消元】

    任意门:http://poj.org/problem?id=1830 开关问题 Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 1 ...

随机推荐

  1. Nginx反向代理设置 从80端口转向其他端口

    [root@localhost bin]# netstat -lnutp Active Internet connections (only servers) Proto Recv-Q Send-Q ...

  2. C#回顾 - 2.NET的IO:Path、File、FileInfo、Directory、DirectoryInfo、DriveInfo、FileSystemWatcher

        1.管理文件系统 一般而言,应用程序都会有保存数据.检索数据的需求. 1.1 使用 path 类来访问文件路径 [path常用的方法]:http://www.cnblogs.com/tangg ...

  3. **PHP中替换换行符

    PHP中替换换行符 php 不同系统的换行不同系统之间换行的实现是不一样的linux 与unix中用 \nMAC 用 \rwindow 为了体现与linux不同 则是 \r\n所以在不同平台上 实现方 ...

  4. 【翻译二十】-java线程池

    Thread Pools Most of the executor implementations in java.util.concurrent use thread pools, which co ...

  5. mac下php开发环境搭建+CI框架使用

    一.启动apache: apachectl start 停止: apachectl stop 配置文件: vi /etc/apache2/httpd.conf 一.修改端口 因为80端口不想被占用,8 ...

  6. html5 svg

    html5 svg <html > <body> <p>canvas 用js 绘画,是整幅画布,适合游戏 svg可放大,支持dom 操作,js事件 线性渐变.高斯模 ...

  7. ZLL网关程序分析

    主机接口 zllSocCmd.h(ZLL的Socket主机接口) 此模块包含ZLL的Socket主机接口API.其包含的函数方法在zllSocCmd.c中实现 ZLL Soc Types 定义了描述设 ...

  8. objective-c 遍历文件夹查看文件

    #import <Foundation/Foundation.h>int main (int argc, const char * argv[]){    @autoreleasepool ...

  9. LoadRunner关联之学习笔记

    去银行办业务,进银行的门,大堂经理给你一张业务号,拿着这张业务号,去柜台办理业务.--录制下来 第二天又去银行,还是拿着这张业务号,去柜台办理业务,柜员就不理你了,因为这张业务号是昨天的.--回放过程 ...

  10. 圆形图片CircleImageView

    github源码路径: https://github.com/hdodenhof/CircleImageView 第一步:将CircleImageView复制 第二步:将attrs.xml复制 第三步 ...