今天在测试spark-sql运行在yarn上的过程中,无意间从日志中发现了一个问题:

spark-sql --master yarn
// :: INFO Client: Requesting a new application from cluster with  NodeManagers
// :: INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster ( MB per container)
// :: INFO Client: Will allocate AM container, with MB memory including MB overhead
// :: INFO Client: Setting up container launch context for our AM
// :: INFO Client: Preparing resources for our AM container
// :: INFO Client: Uploading resource file:/home/spark/software/source/compile/deploy_spark/assembly/target/scala-2.10/spark-assembly-1.3.0-SNAPSHOT-hadoop2.3.0-cdh5.0.0.jar -> hdfs://hadoop000:8020/user/spark/.sparkStaging/application_1416381870014_0093/spark-assembly-1.3.0-SNAPSHOT-hadoop2.3.0-cdh5.0.0.jar
// :: INFO Client: Setting up the launch environment for our AM container

再开启一个spark-sql命令行,从日志中再次发现:

// :: INFO Client: Requesting a new application from cluster with  NodeManagers
// :: INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster ( MB per container)
// :: INFO Client: Will allocate AM container, with MB memory including MB overhead
// :: INFO Client: Setting up container launch context for our AM
// :: INFO Client: Preparing resources for our AM container
// :: INFO Client: Uploading resource file:/home/spark/software/source/compile/deploy_spark/assembly/target/scala-2.10/spark-assembly-1.3.0-SNAPSHOT-hadoop2.3.0-cdh5.0.0.jar -> hdfs://hadoop000:8020/user/spark/.sparkStaging/application_1416381870014_0094/spark-assembly-1.3.0-SNAPSHOT-hadoop2.3.0-cdh5.0.0.jar
// :: INFO Client: Setting up the launch environment for our AM container

然后查看HDFS上的文件:

hadoop fs -ls hdfs://hadoop000:8020/user/spark/.sparkStaging/
drwx------   - spark supergroup           -- : hdfs://hadoop000:8020/user/spark/.sparkStaging/application_1416381870014_0093
drwx------ - spark supergroup -- : hdfs://hadoop000:8020/user/spark/.sparkStaging/application_1416381870014_0094

每个Application都会上传一个spark-assembly-x.x.x-SNAPSHOT-hadoopx.x.x-cdhx.x.x.jar的jar包,影响HDFS的性能以及占用HDFS的空间。

在Spark文档(http://spark.apache.org/docs/latest/running-on-yarn.html)中发现spark.yarn.jar属性,将spark-assembly-xxxxx.jar存放在hdfs://hadoop000:8020/spark_lib/下

在spark-defaults.conf添加属性配置:

spark.yarn.jar hdfs://hadoop000:8020/spark_lib/spark-assembly-1.3.0-SNAPSHOT-hadoop2.3.0-cdh5.0.0.jar

再次启动spark-sql --master yarn观察日志:

14/12/29 15:39:02 INFO Client: Requesting a new application from cluster with 1 NodeManagers
14/12/29 15:39:02 INFO Client: Verifying our application has not requested more than the maximum memory capability of the cluster (8192 MB per container)
14/12/29 15:39:02 INFO Client: Will allocate AM container, with 896 MB memory including 384 MB overhead
14/12/29 15:39:02 INFO Client: Setting up container launch context for our AM
14/12/29 15:39:02 INFO Client: Preparing resources for our AM container
14/12/29 15:39:02 INFO Client: Source and destination file systems are the same. Not copying hdfs://hadoop000:8020/spark_lib/spark-assembly-1.3.0-SNAPSHOT-hadoop2.3.0-cdh5.0.0.jar
14/12/29 15:39:02 INFO Client: Setting up the launch environment for our AM container

观察HDFS上文件

hadoop fs -ls hdfs://hadoop000:8020/user/spark/.sparkStaging/application_1416381870014_0097

该Application对应的目录下没有spark-assembly-xxxxx.jar了,从而节省assembly包上传的过程以及HDFS空间占用。

我在测试过程中遇到了类似如下的错误:

Application application_xxxxxxxxx_yyyy failed 2 times due to AM Container for application_xxxxxxxxx_yyyy 

exited with exitCode: -1000 due to: java.io.FileNotFoundException: File /tmp/hadoop-spark/nm-local-dir/filecache does not exist

在/tmp/hadoop-spark/nm-local-dir路径下创建filecache文件夹即可解决报错问题。

Spark On Yarn中spark.yarn.jar属性的使用的更多相关文章

  1. Spark HA 配置中spark.deploy.zookeeper.url 的意思

    Spark HA的配置网上很多,最近我在看王林的Spark的视频,要付费的.那个人牛B吹得很大,本事应该是有的,但是有本事,不一定就是好老师.一开始吹中国第一,吹着吹着就变成世界第一.就算你真的是世界 ...

  2. Guava com.google.common.base.Stopwatch Spark程序在yarn中 MethodNotFound

    今天在公司提交一个Spark 读取hive中的数据,写入JanusGraph 的app,自己本地调试没有问题,放入环境中提交到yarn 中时,发现app 跑不起. yarn 中日志,也比较明显,app ...

  3. Spark基本工作流程及YARN cluster模式原理(读书笔记)

    Spark基本工作流程及YARN cluster模式原理 转载请注明出处:http://www.cnblogs.com/BYRans/ Spark基本工作流程 相关术语解释 Spark应用程序相关的几 ...

  4. 【原创】大数据基础之Spark(2)Spark on Yarn:container memory allocation容器内存分配

    spark 2.1.1 最近spark任务(spark on yarn)有一个报错 Diagnostics: Container [pid=5901,containerID=container_154 ...

  5. 017 Spark的运行模式(yarn模式)

    1.关于mapreduce on yarn 来提交job的流程 yarn=resourcemanager(RM)+nodemanager(NM) client向RM提交任务 RM向NM分配applic ...

  6. <YARN><MRv2><Spark on YARN>

    MRv1 VS MRv2 MRv1: - JobTracker: 资源管理 & 作业控制- 每个作业由一个JobInProgress控制,每个任务由一个TaskInProgress控制.由于每 ...

  7. Spark记录-源码编译spark2.2.0(结合Hive on Spark/Hive on MR2/Spark on Yarn)

    #spark2.2.0源码编译 #组件:mvn-3.3.9 jdk-1.8 #wget http://mirror.bit.edu.cn/apache/spark/spark-2.2.0/spark- ...

  8. Spark(十二) -- Spark On Yarn & Spark as a Service & Spark On Tachyon

    Spark On Yarn: 从0.6.0版本其,就可以在在Yarn上运行Spark 通过Yarn进行统一的资源管理和调度 进而可以实现不止Spark,多种处理框架并存工作的场景 部署Spark On ...

  9. Spark提交任务(Standalone和Yarn)

    Spark Standalone模式提交任务 Cluster模式: ./spark-submit  \--master spark://node01:7077  \--deploy-mode clus ...

随机推荐

  1. Objective-C 与 C++ 的异同

    stackflow 上有同学提问"C++ 与 Objective-C 有什么异同?"楼下的提供的两个资料挺不错的. 其一是: Pierre Chatelier 写的 <Fro ...

  2. 黑马程序员——OC语言 三大特性之多态

    Java培训.Android培训.iOS培训..Net培训.期待与您交流! (以下内容是对黑马苹果入学视频的个人知识点总结) 三大特性之一的多态 (一)多态的基本概念 OC对象具有多态性体现在 Per ...

  3. Java中的HashSet和TreeSet

    1:Set集合(理解) (1)Set集合的特点 无序,唯一 (2)HashSet集合(掌握) A:底层数据结构是哈希表(是一个元素为链表的数组) B:哈希表底层依赖两个方法:hashCode()和eq ...

  4. Notes of learning AutoLayout

    在XCode5中,如果我们添加一个Button或者Label,或者其他的什么标准View,而不设置任何constraints,IB会自动生成constraints,而这些constraints是fix ...

  5. (转)JAVA实现Windows拨号、IP切换

    原理: 通过调用windows下的dos命令实现拨号 PS:连接名称获取不一定都是适用,但苦于知道的dos命令太少了,只能将就这么用着. 如有更好的方法,烦请不吝赐教. public class Co ...

  6. UVA 10173 (几何凸包)

    判断矩形能包围点集的最小面积:凸包 #include <iostream> #include <cmath> #include <cstdio> #include ...

  7. Windows上管理远程Linux VPS/服务器文件工具 - winscp

    Linux上经常会经常需要编辑文件,特别是Linux VPS/服务器安装好系统之后配置环境会需要修改很多的配置文件等,对于常用Linux的基本上都能够熟练使用vi或者nano等SSH下面的文件编辑工具 ...

  8. Python12期培训班-day1-登陆验证代码分享

    #!/usr/bin/env python import sys import getpass afile = 'afile' bfile = 'bfile' circulation_num=0 #循 ...

  9. H5版俄罗斯方块(2)---游戏的基本框架和实现

    前言: 上文中谈到了H5版俄罗斯方块的需求和目标, 这次要实现一个可玩的版本. 但饭要一口一口吃, 很多东西并非一蹴而就. 本文将简单实现一个可玩的俄罗斯方块版本. 下一步会引入AI, 最终采用coc ...

  10. Erlang 103 Erlang分布式编程

    Outline 笔记系列 Erlang环境和顺序编程Erlang并发编程Erlang分布式编程YawsErlang/OTP 日期              变更说明 2014-11-23 A Outl ...