匈牙利算法,求二分图最大匹配。

若P是图G中一条连通两个未匹配顶点的路径,并且属于M的边和不属于M的边(即已匹配和待匹配的边)在P上交替出现,则称P为相对于M的一条增广路径。(M为一个匹配)

由增广路的定义可以推出下述三个结论:

  • P的路径长度必定为奇数,第一条边和最后一条边都不属于M。所以Line 25-27从first part出发,不从二分图的另一部分出发。Line 12实现了交替出现的逻辑;node->neig匹配,当且仅当neig没有被其他点匹配,或者neig被first中的其他点matches[neig]匹配,并且从matches[neig]能够找到一条增广路径。这里就实现了交替的逻辑了。
  • 将M和P进行异或操作(去同存异)可以得到一个更大的匹配M’。这是因为,属于M的边和不属于M的边交替出现,且第一和最后一条边都不属于M,所以增广路径中,不属于M的边比属于M的边多1,去同存异之后,一定会得到一个更大的匹配(加1了)。Line 13实现的是去同存异的逻辑。如果从node到neig存在一条增广路径,那么中间这些相同的部分直接省略。
  • M为G的最大匹配当且仅当不存在M的增广路径。
 #include <iostream>
#include <cstdio>
#include <vector> using namespace std; bool augment(vector<vector<int> > &adj, int node,
vector<bool> &visited, vector<int> &matches) {
for (auto neig : adj[node]) {
if (!visited[neig]) {
visited[neig] = true;
if (matches[neig] == - || augment(adj, matches[neig], visited, matches)) {
matches[neig] = node;
return true;
}
}
}
return false;
} int hungary(vector<vector<int> > &adj, vector<int> &first) {
vector<bool> visited;
vector<int> matches(adj.size(), -);
int count = ;
for (auto f : first) {
visited.assign(adj.size(), false);
if (augment(adj, f, visited, matches)) {
count++;
}
}
for (int i = ; i < adj.size(); ++i) {
cout << i << "<->" << matches[i] << endl;
}
return count;
} int main(int argc, char** argv) {
freopen("input.txt", "r", stdin);
int first, n, m;
cin >> n >> first >> m;
vector<vector<int> > adj(n);
vector<int> left;
for (int i = ; i < first; ++i) {
int l;
cin >> l;
left.push_back(l);
}
for (int i = ; i < m; ++i) {
int n1, n2;
cin >> n1 >> n2;
adj[n1].push_back(n2);
adj[n2].push_back(n1);
} cout << hungary(adj, left) << endl;
return ;
}

时间复杂度是O(VE),空间复杂度感觉O(V)就行了啊,为什么其他人都说是O(V+E)?.

graph | hungary的更多相关文章

  1. [开发笔记] Graph Databases on developing

    TimeWall is a graph databases github It be used to apply mathematic model and social network with gr ...

  2. Introduction to graph theory 图论/脑网络基础

    Source: Connected Brain Figure above: Bullmore E, Sporns O. Complex brain networks: graph theoretica ...

  3. POJ 2125 Destroying the Graph 二分图最小点权覆盖

    Destroying The Graph Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 8198   Accepted: 2 ...

  4. [LeetCode] Number of Connected Components in an Undirected Graph 无向图中的连通区域的个数

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  5. [LeetCode] Graph Valid Tree 图验证树

    Given n nodes labeled from 0 to n - 1 and a list of undirected edges (each edge is a pair of nodes), ...

  6. [LeetCode] Clone Graph 无向图的复制

    Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. OJ's ...

  7. 讲座:Influence maximization on big social graph

    Influence maximization on big social graph Fanju PPT链接: social influence booming of online social ne ...

  8. zabbix利用api批量添加item,并且批量配置添加graph

    关于zabbix的API见,zabbixAPI 1item批量添加 我是根据我这边的具体情况来做的,本来想在模板里面添加item,但是看了看API不支持,只是支持在host里面添加,所以我先在一个ho ...

  9. Theano Graph Structure

    Graph Structure Graph Definition theano's symbolic mathematical computation, which is composed of: A ...

随机推荐

  1. SU Demos-06Selecting Traces

    不足之处,欢迎批评指正 共3个脚本,先看readme 第1个脚本 运行结果 第2个脚本 运行结果 第3个脚本 运行结果

  2. Xamarin Android教程Android基本知识版本介绍与系统介绍

    Xamarin Android教程Android基本知识版本介绍与系统介绍 Xamarin Android教程Android基本知识版本介绍与系统介绍,开发Andriod有时候不像iOS一样轻松,因为 ...

  3. HTML DOM domain 属性

    定义和用法 domain 属性可返回下载当前文档的服务器域名. 语法 document.domain 说明 该属性是一个只读的字符串,包含了载入当前文档的 web 服务器的主机名. 提示和注释 提示: ...

  4. HDU5812 Distance(枚举 + 分解因子)

    题目 Source http://acm.hdu.edu.cn/showproblem.php?pid=5812 Description In number theory, a prime is a ...

  5. NoSql之MongoDB--Windows下数据库配置及初步使用

    1.NoSql简介 NoSql(Not Only Sql)指的是非关系型的数据库.下一代数据库主要解决几个要点:非关系型的.分布式的.开源的.水平可扩展的.原始的目的是为了大规模web应用,这场 运动 ...

  6. bzoj1006 [HNOI2008]神奇的国度

    1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 2304  Solved: 1043 Description ...

  7. ccc 正态分布

    cc.Class({ extends: cc.Component, properties: { prefab: { default:null, type:cc.Prefab }, root: { de ...

  8. (转)distcp从ftp到hdfs拷贝文件

    link :http://blog.csdn.net/sptoor/article/details/11523469 distcp从ftp到hdfs拷贝文件: hadoop distcp ftp:// ...

  9. JDBC连接各种数据库的字符串,就是不好记

    JDBC连接各种数据库的字符串大同小异,在此总结一下,备忘. oracle    driverClass:oracle.jdbc.driver.OracleDriver    url:jdbc:ora ...

  10. cdoj 树上战争(Battle on the tree) Label:并查集?

    给一棵树,如果树上的某个节点被某个人占据,则它的所有儿子都被占据,lxh和pfz初始时分别站在两个节点上,谁当前所在的点被另一个人占据,他就输了比赛,问谁能获胜. Input 输入包含多组数据 每组第 ...