文本比较算法Ⅱ——Needleman/Wunsch算法
在“文本比较算法Ⅰ——LD算法”中介绍了基于编辑距离的文本比较算法——LD算法。
本文介绍基于最长公共子串的文本比较算法——Needleman/Wunsch算法。
还是以实例说明:字符串A=kitten,字符串B=sitting
那他们的最长公共子串为ittn(注:最长公共子串不需要连续出现,但一定是出现的顺序一致),最长公共子串长度为4。
定义:
LCS(A,B)表示字符串A和字符串B的最长公共子串的长度。很显然,LSC(A,B)=0表示两个字符串没有公共部分。
Rev(A)表示反转字符串A
Len(A)表示字符串A的长度
A+B表示连接字符串A和字符串B
性质:
LCS(A,A)=Len(A)
LCS(A,"")=0
LCS(A,B)=LCS(B,A)
0≤LCS(A,B)≤Min(Len(A),Len(B))
LCS(A,B)=LCS(Rev(A),Rev(B))
LCS(A+C,B+C)=LCS(A,B)+Len(C)
LCS(A+B,A+C)=Len(A)+LCS(B,C)
LCS(A,B)≥LCS(A,C)+LCS(B,C)
LCS(A+C,B)≥LCS(A,B)+LCS(B,C)
为了讲解计算LCS(A,B),特给予以下几个定义
A=a1a2……aN,表示A是由a1a2……aN这N个字符组成,Len(A)=N
B=b1b2……bM,表示B是由b1b2……bM这M个字符组成,Len(B)=M
定义LCS(i,j)=LCS(a1a2……ai,b1b2……bj),其中0≤i≤N,0≤j≤M
故: LCS(N,M)=LCS(A,B)
LCS(0,0)=0
LCS(0,j)=0
LCS(i,0)=0
对于1≤i≤N,1≤j≤M,有公式一
若ai=bj,则LCS(i,j)=LCS(i-1,j-1)+1
若ai≠bj,则LCS(i,j)=Max(LCS(i-1,j-1),LCS(i-1,j),LCS(i,j-1))
计算LCS(A,B)的算法有很多,下面介绍的Needleman/Wunsch算法是其中的一种。和LD算法类似,Needleman/Wunsch算法用的都是动态规划的思想。在Needleman/Wunsch算法中还设定了一个权值,用以区分三种操作(插入、删除、更改)的优先级。在下面的算法中,认为三种操作的优先级都一样。故权值默认为1。
举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LCS(A,B)
第一步:初始化LCS矩阵
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | |||||||||||
| G | 0 | |||||||||||
| A | 0 | |||||||||||
| T | 0 | |||||||||||
| C | 0 | |||||||||||
| G | 0 | |||||||||||
| A | 0 |
第二步:利用公式一,计算矩阵的第一行
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | |||||||||||
| A | 0 | |||||||||||
| T | 0 | |||||||||||
| C | 0 | |||||||||||
| G | 0 | |||||||||||
| A | 0 |
第三步:利用公式一,计算矩阵的其余各行
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
则,LCS(A,B)=LCS(7,11)=6
可以看出,Needleman/Wunsch算法实际上和LD算法是非常接近的。故他们的时间复杂度和空间复杂度也一样。时间复杂度为O(MN),空间复杂度为O(MN)。空间复杂度经过优化,可以优化到O(M),但是一旦优化就丧失了计算匹配字串的机会了。由于代码和LD算法几乎一样。这里就不再贴代码了。
还是以上面为例A=GGATCGA,B=GAATTCAGTTA,LCS(A,B)=6
他们的匹配为:
A:GGA_TC_G__A
B:GAATTCAGTTA
如上面所示,蓝色表示完全匹配,黑色表示编辑操作,_表示插入字符或者是删除字符操作。如上面所示,蓝色字符有6个,表示最长公共子串长度为6。
利用上面的Needleman/Wunsch算法矩阵,通过回溯,能找到匹配字串
第一步:定位在矩阵的右下角
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
第二步:回溯单元格,至矩阵的左上角
若ai=bj,则回溯到左上角单元格
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
若ai≠bj,回溯到左上角、上边、左边中值最大的单元格,若有相同最大值的单元格,优先级按照左上角、上边、左边的顺序
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
若当前单元格是在矩阵的第一行,则回溯至左边的单元格
若当前单元格是在矩阵的第一列,则回溯至上边的单元格
| G | A | A | T | T | C | A | G | T | T | A | ||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| G | 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| A | 0 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
| T | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 |
| C | 0 | 1 | 2 | 2 | 3 | 3 | 4 | 4 | 4 | 4 | 4 | 4 |
| G | 0 | 1 | 2 | 2 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 5 |
| A | 0 | 1 | 2 | 3 | 3 | 3 | 3 | 4 | 5 | 5 | 5 | 6 |
依照上面的回溯法则,回溯到矩阵的左上角
第三步:根据回溯路径,写出匹配字串
若回溯到左上角单元格,将ai添加到匹配字串A,将bj添加到匹配字串B
若回溯到上边单元格,将ai添加到匹配字串A,将_添加到匹配字串B
若回溯到左边单元格,将_添加到匹配字串A,将bj添加到匹配字串B
搜索晚整个匹配路径,匹配字串也就完成了
可以看出,LD算法和Needleman/Wunsch算法的回溯路径是一样的。这样找到的匹配字串也是一样的。
不过,Needleman/Wunsch算法和LD算法一样,若要找出匹配字串,空间的复杂度就一定是O(MN),在文本比较长的时候,是极为耗用存储空间的。故若要计算出匹配字串,还得用其他的算法,留待后文介绍。
文本比较算法Ⅱ——Needleman/Wunsch算法的更多相关文章
- 文本比较算法Ⅱ——Needleman/Wunsch算法的C++实现【求最长公共子串(不需要连续)】
算法见:http://www.cnblogs.com/grenet/archive/2010/06/03/1750454.html 求最长公共子串(不需要连续) #include <stdio. ...
- 文本比较算法:Needleman/Wunsch算法
本文介绍基于最长公共子序列的文本比较算法——Needleman/Wunsch算法.还是以实例说明:字符串A=kitten,字符串B=sitting那他们的最长公共子序列为ittn(注:最长公共子序列不 ...
- 利用Needleman–Wunsch算法进行DNA序列全局比对
生物信息学原理作业第二弹:利用Needleman–Wunsch算法进行DNA序列全局比对. 具体原理:https://en.wikipedia.org/wiki/Needleman%E2%80%93W ...
- 字符串与模式匹配算法(六):Needleman–Wunsch算法
一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...
- 文本比较算法三——SUNDAY 算法
SUNDAY 算法描述: 字符串查找算法中,最著名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).两个算法在最坏情况下均具有线性的查找时间.但是在实用上 ...
- 算法:KMP算法
算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...
- BF算法与KMP算法
BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...
- Levenshtein Distance算法(编辑距离算法)
编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...
- javascript数据结构与算法--高级排序算法
javascript数据结构与算法--高级排序算法 高级排序算法是处理大型数据集的最高效排序算法,它是处理的数据集可以达到上百万个元素,而不仅仅是几百个或者几千个.现在我们来学习下2种高级排序算法-- ...
随机推荐
- PHP判断访问者手机移动端还是PC端的函数,亲测好用
,用手机访问PC端WWW域名的时候,自动判断跳转到移动端,用电脑访问M域名手机网站的时候,自动跳转到PC端,我们团队在开发erdaicms二代旅游CMS网站管理系统的时候(http://www.erd ...
- IO流03--毕向东JAVA基础教程视频学习笔记
提要 16 读取转换流17 写入转换流18 流操作规律-119 流操作规律-220 改变标准输入输出设备21 异常的日志信息22 系统信息 16 读取转换流 字符流体系中的InputStreamRea ...
- Asp.net MVC验证那些事(4)-- 自定义验证特性
在项目的实际使用中,MVC默认提供的Validation Attribute往往不够用,难以应付现实中复杂多变的验证需求.比如, 在注册用户的过程中,往往需要用户勾选”免责声明”,这个checkbox ...
- WebApi深入学习--特性路由
特性路由 WebApi2默认的路由规则我们称作基于约定路由,很多时候我们使用RESTful风格的URI.简单的路由是没问题的,如 api/Products/{id},但有些事很难处理的,如资源之间存在 ...
- 设计模式C#实现(十二)——装饰模式
意图 0 适用性 1 结构 2 实现 3 效果 4 参考 5 意图 动态的给一个对象添加一些额外的职责. 适用性 动态的为单个对象添加职责而不影响其他对象 处理那些可以撤销的职责(? 在某些功能不需要 ...
- 烂泥:【转】rsync命令参数详解
本文由秀依林枫提供友情赞助,首发于烂泥行天下. rsync安装完毕后,我们可以通过rsync –help查看rysnc命令的使用.如下: 有关rsync的命令格式,在此我们就不多介绍了.如果有想了解的 ...
- Session Sticky About Nginx
Nginx以前对session 保持支持不太好,主要采用ip_hash把同一来源的客户(同一C段的IP)固定指向后端的同一台机器,ip_hash有个缺点是不能实现很好的负载均衡:直到nginx的扩展模 ...
- Python搜索目录下指定的文件,并返回绝对路径(包括子目录)
#!/usr/bin/python #coding=UTF-8 #FileName:search.py #文件搜索 import os; import sys; returnList = []; de ...
- netsh端口转发
使用多个虚拟机,将开发环境和工作沟通环境分开(即时通,办公系统都只能在windows下使用…),将开发环境的服务提供给外部访问时,需要在主机上通过代理配置数据转发. VirtualBox提供了端口 ...
- 《超级IP》:伪理论,没能比现有的市场营销理论更高明,只敢勉强去解释已经发生的事情,不敢去预测未来。2星。
超级IP是作者造出来的一个词.作者尝试把“超级IP”作为一种理论来解释2015年以来的各种网红现象.读完全书后,我的感觉是这个理论不怎么样: 1:作者完全不提现有的市场营销理论.我的问题是:现有的理论 ...