在“文本比较算法Ⅰ——LD算法”中介绍了基于编辑距离的文本比较算法——LD算法。

  本文介绍基于最长公共子串的文本比较算法——Needleman/Wunsch算法。

  还是以实例说明:字符串A=kitten,字符串B=sitting

  那他们的最长公共子串为ittn(注:最长公共子串不需要连续出现,但一定是出现的顺序一致),最长公共子串长度为4。

  

  定义:

  LCS(A,B)表示字符串A和字符串B的最长公共子串的长度。很显然,LSC(A,B)=0表示两个字符串没有公共部分。

  Rev(A)表示反转字符串A

  Len(A)表示字符串A的长度

  A+B表示连接字符串A和字符串B

  性质:

  LCS(A,A)=Len(A)

  LCS(A,"")=0

  LCS(A,B)=LCS(B,A)

  0≤LCS(A,B)≤Min(Len(A),Len(B))

  LCS(A,B)=LCS(Rev(A),Rev(B))

  LCS(A+C,B+C)=LCS(A,B)+Len(C)

  LCS(A+B,A+C)=Len(A)+LCS(B,C)

  LCS(A,B)≥LCS(A,C)+LCS(B,C)

  LCS(A+C,B)≥LCS(A,B)+LCS(B,C)

  为了讲解计算LCS(A,B),特给予以下几个定义

  A=a1a2……aN,表示A是由a1a2……aN这N个字符组成,Len(A)=N

  B=b1b2……bM,表示B是由b1b2……bM这M个字符组成,Len(B)=M

  定义LCS(i,j)=LCS(a1a2……ai,b1b2……bj),其中0≤i≤N,0≤j≤M

  故:  LCS(N,M)=LCS(A,B)

      LCS(0,0)=0

      LCS(0,j)=0

      LCS(i,0)=0

  对于1≤i≤N,1≤j≤M,有公式一

  若ai=bj,则LCS(i,j)=LCS(i-1,j-1)+1

  若ai≠bj,则LCS(i,j)=Max(LCS(i-1,j-1),LCS(i-1,j),LCS(i,j-1))

  计算LCS(A,B)的算法有很多,下面介绍的Needleman/Wunsch算法是其中的一种。和LD算法类似,Needleman/Wunsch算法用的都是动态规划的思想。在Needleman/Wunsch算法中还设定了一个权值,用以区分三种操作(插入、删除、更改)的优先级。在下面的算法中,认为三种操作的优先级都一样。故权值默认为1。

  

  举例说明:A=GGATCGA,B=GAATTCAGTTA,计算LCS(A,B)

  第一步:初始化LCS矩阵

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0                      
G 0                      
A 0                      
T 0                      
C 0                      
G 0                      
A 0                      

  第二步:利用公式一,计算矩阵的第一行

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0                      
A 0                      
T 0                      
C 0                      
G 0                      
A 0                      

  第三步:利用公式一,计算矩阵的其余各行

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

  则,LCS(A,B)=LCS(7,11)=6

  可以看出,Needleman/Wunsch算法实际上和LD算法是非常接近的。故他们的时间复杂度和空间复杂度也一样。时间复杂度为O(MN),空间复杂度为O(MN)。空间复杂度经过优化,可以优化到O(M),但是一旦优化就丧失了计算匹配字串的机会了。由于代码和LD算法几乎一样。这里就不再贴代码了。

  

  还是以上面为例A=GGATCGA,B=GAATTCAGTTA,LCS(A,B)=6

  他们的匹配为:

    A:GGA_TC_G__A

    B:GAATTCAGTTA

  如上面所示,蓝色表示完全匹配,黑色表示编辑操作,_表示插入字符或者是删除字符操作。如上面所示,蓝色字符有6个,表示最长公共子串长度为6。

  利用上面的Needleman/Wunsch算法矩阵,通过回溯,能找到匹配字串

  第一步:定位在矩阵的右下角

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

  第二步:回溯单元格,至矩阵的左上角

    若ai=bj,则回溯到左上角单元格

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

    若ai≠bj,回溯到左上角、上边、左边中值最大的单元格,若有相同最大值的单元格,优先级按照左上角、上边、左边的顺序

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

    若当前单元格是在矩阵的第一行,则回溯至左边的单元格

    若当前单元格是在矩阵的第一列,则回溯至上边的单元格

Needleman/Wunsch算法矩阵
    G A A T T C A G T T A
  0 0 0 0 0 0 0 0 0 0 0 0
G 0 1 1 1 1 1 1 1 1 1 1 1
G 0 1 1 1 1 1 1 1 2 2 2 2
A 0 1 2 2 2 2 2 2 2 2 2 2
T 0 1 2 2 3 3 3 3 3 3 3 3
C 0 1 2 2 3 3 4 4 4 4 4 4
G 0 1 2 2 3 3 3 4 5 5 5 5
A 0 1 2 3 3 3 3 4 5 5 5 6

    依照上面的回溯法则,回溯到矩阵的左上角

  第三步:根据回溯路径,写出匹配字串

    若回溯到左上角单元格,将ai添加到匹配字串A,将bj添加到匹配字串B

    若回溯到上边单元格,将ai添加到匹配字串A,将_添加到匹配字串B

    若回溯到左边单元格,将_添加到匹配字串A,将bj添加到匹配字串B

    搜索晚整个匹配路径,匹配字串也就完成了

  可以看出,LD算法和Needleman/Wunsch算法的回溯路径是一样的。这样找到的匹配字串也是一样的。

  不过,Needleman/Wunsch算法和LD算法一样,若要找出匹配字串,空间的复杂度就一定是O(MN),在文本比较长的时候,是极为耗用存储空间的。故若要计算出匹配字串,还得用其他的算法,留待后文介绍。

文本比较算法Ⅱ——Needleman/Wunsch算法的更多相关文章

  1. 文本比较算法Ⅱ——Needleman/Wunsch算法的C++实现【求最长公共子串(不需要连续)】

    算法见:http://www.cnblogs.com/grenet/archive/2010/06/03/1750454.html 求最长公共子串(不需要连续) #include <stdio. ...

  2. 文本比较算法:Needleman/Wunsch算法

    本文介绍基于最长公共子序列的文本比较算法——Needleman/Wunsch算法.还是以实例说明:字符串A=kitten,字符串B=sitting那他们的最长公共子序列为ittn(注:最长公共子序列不 ...

  3. 利用Needleman–Wunsch算法进行DNA序列全局比对

    生物信息学原理作业第二弹:利用Needleman–Wunsch算法进行DNA序列全局比对. 具体原理:https://en.wikipedia.org/wiki/Needleman%E2%80%93W ...

  4. 字符串与模式匹配算法(六):Needleman–Wunsch算法

    一.Needleman-Wunsch 算法 尼德曼-翁施算法(英语:Needleman-Wunsch Algorithm)是基于生物信息学的知识来匹配蛋白序列或者DNA序列的算法.这是将动态算法应用于 ...

  5. 文本比较算法三——SUNDAY 算法

    SUNDAY 算法描述: 字符串查找算法中,最著名的两个是KMP算法(Knuth-Morris-Pratt)和BM算法(Boyer-Moore).两个算法在最坏情况下均具有线性的查找时间.但是在实用上 ...

  6. 算法:KMP算法

    算法:KMP排序 算法分析 KMP算法是一种快速的模式匹配算法.KMP是三位大师:D.E.Knuth.J.H.Morris和V.R.Pratt同时发现的,所以取首字母组成KMP. 少部分图片来自孤~影 ...

  7. BF算法与KMP算法

    BF(Brute Force)算法是普通的模式匹配算法,BF算法的思想就是将目标串S的第一个字符与模式串T的第一个字符进行匹配,若相等,则继续比较S的第二个字符和 T的第二个字符:若不相等,则比较S的 ...

  8. Levenshtein Distance算法(编辑距离算法)

    编辑距离 编辑距离(Edit Distance),又称Levenshtein距离,是指两个字串之间,由一个转成另一个所需的最少编辑操作次数.许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符, ...

  9. javascript数据结构与算法--高级排序算法

    javascript数据结构与算法--高级排序算法 高级排序算法是处理大型数据集的最高效排序算法,它是处理的数据集可以达到上百万个元素,而不仅仅是几百个或者几千个.现在我们来学习下2种高级排序算法-- ...

随机推荐

  1. apache 日志轮询 linux cronolog

    Linux下运行的Web服务器Apache,默认日志文件是不分割的,一个整文件既不易于管理,也不易于分析统计.安装cronolog后,可以将日志文件按时间分割,易于管理和分析. cronolog安装配 ...

  2. webconfig 文件加密处理

    前几日正好遇到配置文件加密解密的问题,简单记录下流程. 1.首先运行cmd然后打开Framework.cd C:\Windows\Microsoft.NET\Framework\v4.0.303192 ...

  3. FP并行算法的几个相关方向

    1 集群系统中的 FP-tree 并行算法(many for one一个任务 还是 云计算one for many多个任务?) 计算机集群系统利用网络把一组具有高性能的工作站或者 PC 机按一定的结构 ...

  4. text-transform设置单词首字母大写

    text-transform 一.语法   text-transform 主要用于设置文本的大小写. text-transform有5个值,分别如下: none. 默认值. capitalize. 文 ...

  5. iOS拍照上传后,在web端显示旋转 Swift+OC版解决方案

    问题描述: 手机头像上传,遇到一个怪现象,就是拍照上传时,手机端显示头像正常,但在web端查看会有一个左旋90度的问题. 并且照片竖怕才会有此问题,横拍不存在. 原因分析: 手机拍照时,用相机拍摄出来 ...

  6. lsattr, chattr

    lsattr $lsattr #查看文件的隐藏属性 $lsattr -------------e- ./bookmarks-2016-10-11.json -------------e- ./rxvt ...

  7. android 查看解压后的.xml文件代码(axmlprinter2)

    axmlprinter2工具下载地址:http://pan.baidu.com/s/1o67eXtS 方法:1.将要查看的.xml文件复制到AXMLPrinter2.jar所在目录2.通过cmd 输入 ...

  8. 系统进程 zygote(三)—— app_process 的 main 函数

    ilocker:关注 Android 安全(新入行,0基础) QQ: 2597294287 首先: , , , ) < ) { // Older kernels don't understand ...

  9. 配置安装DVWA

    本文地址:http://www.cnblogs.com/go2bed/p/4162313.html —————————————————— 什么是DVWA? Damn Vulnerable Web Ap ...

  10. 第9章 用内核对象进行线程同步(1)_事件对象(Event)

    9.1 等待函数 (1)WaitForSingleObject(hObject,dwMilliseonds); ①dwMilliseconds为INFINITE时表示无限等待 ②dwMilliseco ...