求出每个边双连通分量缩点后的度,度为1的点即叶子节点。原图加上(leaf+1)/2条边即可变成双连通图。

#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#include <map> using namespace std;
const int N = ;
const int M = ;
struct Edge
{
int to,next;
bool cut;
}edge[M];
int head[N],tot;
int Low[N],DFN[N],Stack[N],Belong[N];
int Index,top;
int block;
bool Instack[N];
int bridge;
void addedge(int u,int v)
{
edge[tot].to = v;edge[tot].next = head[u];head[u] = tot++;
edge[tot].cut=false;
}
void Tarjan(int u,int pre)
{
int v;
Low[u] = DFN[u] = ++Index;
Stack[top++] = u;
Instack[u] = true;
for(int i = head[u];~i;i = edge[i].next)
{
v = edge[i].to;
if(v == pre)continue;
if( !DFN[v] )
{
Tarjan(v,u);
if( Low[u] > Low[v] )Low[u] = Low[v];
if(Low[v] > DFN[u])//桥
{
bridge++;
edge[i].cut = true;
edge[i^].cut = true;
}
}
else if(Instack[v] && Low[u] > DFN[v])
Low[u] = DFN[v];
}
if(Low[u] == DFN[u])
{
block++;
do
{
v = Stack[--top];
Instack[v] = false;
Belong[v] = block;
}
while( v != u);
}
}
int du[N];//缩点后形成树,每个点的度数
void solve(int n)
{
memset(DFN,,sizeof(DFN));
memset(Instack,false,sizeof Instack);
Index = block = top = ;
Tarjan(,);
int ans = ;
memset(du,,sizeof(du));
for(int i = ;i <= n;i++)
for(int j = head[i];~j;j = edge[j].next)
if(edge[j].cut)
du[Belong[i]]++;
for(int i = ;i <= block;i++)
if(du[i]==)
ans++;
printf("%d\n",(ans+)/);
}
void init()
{
tot = ;
memset(head,-,sizeof head);
}
int main()
{
int n,m;
int u,v;
while(scanf("%d%d",&n,&m)==)
{
init();
while(m--)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
}
solve(n);
}
return ;
}

  

【POJ 3177】Redundant Paths(边双连通分量)的更多相关文章

  1. poj 3177 Redundant Paths(边双连通分量+缩点)

    链接:http://poj.org/problem?id=3177 题意:有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新建多少条路,使得任 ...

  2. POJ 3177 Redundant Paths (边双连通+缩点)

    <题目链接> <转载于 >>>  > 题目大意: 有n个牧场,Bessie 要从一个牧场到另一个牧场,要求至少要有2条独立的路可以走.现已有m条路,求至少要新 ...

  3. POJ 3352 Road Construction ; POJ 3177 Redundant Paths (双联通)

    这两题好像是一样的,就是3177要去掉重边. 但是为什么要去重边呢??????我认为如果有重边的话,应该也要考虑在内才是. 这两题我用了求割边,在去掉割边,用DFS缩点. 有大神说用Tarjan,不过 ...

  4. POJ 3177 Redundant Paths 边双(重边)缩点

    分析:边双缩点后,消环变树,然后答案就是所有叶子结点(即度为1的点)相连,为(sum+1)/2; 注:此题有坑,踩踩更健康,普通边双缩短默认没有无向图没有重边,但是这道题是有的 我们看,low数组是我 ...

  5. tarjan算法求桥双连通分量 POJ 3177 Redundant Paths

    POJ 3177 Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 12598   Accept ...

  6. POJ 3177 Redundant Paths POJ 3352 Road Construction(双连接)

    POJ 3177 Redundant Paths POJ 3352 Road Construction 题目链接 题意:两题一样的.一份代码能交.给定一个连通无向图,问加几条边能使得图变成一个双连通图 ...

  7. [双连通分量] POJ 3177 Redundant Paths

    Redundant Paths Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 13712   Accepted: 5821 ...

  8. POJ 3177 Redundant Paths & POJ 3352 Road Construction(双连通分量)

    Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...

  9. POJ 3177 Redundant Paths(边双连通分量)

    [题目链接] http://poj.org/problem?id=3177 [题目大意] 给出一张图,问增加几条边,使得整张图构成双连通分量 [题解] 首先我们对图进行双连通分量缩点, 那么问题就转化 ...

  10. POJ 3177 Redundant Paths (tarjan边双连通分量)

    题目连接:http://poj.org/problem?id=3177 题目大意是给定一些牧场,牧场和牧场之间可能存在道路相连,要求从一个牧场到另一个牧场要有至少两条以上不同的路径,且路径的每条pat ...

随机推荐

  1. mysql密码遗忘和登陆报错问题

    mysql登录密码忘记,其实解决办法很简单,只需要在mysql的主配置文件my.cnf里添加一行"跳过授权表"的参数选择即可! 在my.cnf中添加下面一行:[root@test- ...

  2. C语言:枚举类型

    整数常量的符号名称... #include <stdio.h> enum _bool {false,true}; int main(){ enum colors { red, orange ...

  3. .net core注入时作用域的说明

    Transient:每次获取实例都是新实例. Scoped:每次web请求都是新实例,在同一web请求是相同的实例. Singleton:实例只创建一次,以后的每次获取都是这一实例.

  4. IE6/IE7/IE8/Firefox/Chrome/Safari的CSS hack兼容一览表

    浏览器兼容问题一直是前段开发工程师比较头痛的问题,熟悉了里面的规则也就变得简单了,这里有一份资料可以分享给大家,大家平时开发过程中遵循这个规律的话,会变得轻松多了: 各浏览器CSS hack兼容表: ...

  5. NET代码重构

    记一次.NET代码重构   好久没写代码了,终于好不容易接到了开发任务,一看时间还挺充足的,我就慢慢整吧,若是遇上赶进度,基本上直接是功能优先,完全不考虑设计.你可以认为我完全没有追求,当身后有鞭子使 ...

  6. Integer.valueof(null)报错

    原文  http://javacat360.iteye.com/blog/2024378 主题 Java 昨天,一同事问我一个问题,估计是他前段日子面试遇到的 问题很简单,String.valueof ...

  7. [MetaHook] Find a function signature

    Find a non-public function signature, we need a tool "IDA Pro" ( You can open picture in a ...

  8. C118+Osmocom-bb+Openbts搭建小型基站

    演示图片: 演示视频: 交流论坛:GsMsEc 交流Q群:

  9. 扩展欧几里得算法(extgcd)

    相信大家对欧几里得算法,即辗转相除法不陌生吧. 代码如下: int gcd(int a, int b){ return !b ? gcd(b, a % b) : a; } 而扩展欧几里得算法,顾名思义 ...

  10. 【6年开源路】海王星给你好看!FineUI v4.0正式版暨《FineUI3to4一键升级工具》发布!

    去年10-28号,我发布了一篇文章<海王星给你好看!FineUI v4.0公测版发布暨<你找BUG我送书>活动开始>,标志着FineUI开始向4.0版本迈进.经过4个月3个公测 ...