转自;http://flyingcat2013.blog.51cto.com/7061638/1281026

前面的三种排序算法(冒泡排序,选择排序,插入排序)在平均情况下均为O(n^2)复杂度,在处理较大数据的时候比较吃力。现在来说说相对快速一些的算法,例如下面的归并排序。

算法概述/思路

归并排序是基于一种被称为“分治”(divide and conquer)的策略。其基本思路是这样的:

1.对于两个有序的数组,要将其合并为一个有序数组,我们可以很容易地写出如下代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
//both a and b is ascend.
public void merge(int[] a, int[] b, int[] c){
    int i=0,j=0,k=0;
    while (i<=a.length && j<=b.length){
        if (a[i]<=b[i]){
            c[k++]=a[i++];
        }
        else{
            c[k++]=b[j++];
        }
    }
    while (i<=a.length){
        c[k++]=a[i++];
    }
    while (j<=b.length){
        c[k++]=b[j++];
    }
}

容易看出,这样的合并算法是高效的,其时间复杂度可达到O(n)。

2.假如有一个无序数组需要排序,但它的两个完全划分的子数组A和B分别有序,借助上述代码,我们也可以很容易实现;

3.那么,如果A,B无序,怎么办呢?可以把它们再分成更小的数组。

4.如此一直划分到最小,每个子数组都只有一个元素,则可以视为有序数组。

5.从这些最小的数组开始,逆着上面的步骤合并回去,整个数组就排好了。

总而言之,归并排序就是使用递,先分解数组为子数组,再合数组。

下面是归并排序的示意图(图片来自维基百科):

代码实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
//归并排序
    public static void mergeSort(int[] arr){
        int[] temp =new int[arr.length];
        internalMergeSort(arr, temp, 0, arr.length-1);
    }
    private static void internalMergeSort(int[] a, int[] b, int left, int right){
        //当left==right的时,已经不需要再划分了
        if (left<right){
            int middle = (left+right)/2;
            internalMergeSort(a, b, left, middle);          //左子数组
            internalMergeSort(a, b, middle+1, right);       //右子数组
            mergeSortedArray(a, b, left, middle, right);    //合并两个子数组
        }
    }
    // 合并两个有序子序列 arr[left, ..., middle] 和 arr[middle+1, ..., right]。temp是辅助数组。
    private static void mergeSortedArray(int arr[], int temp[], int left, int middle, int right){
        int i=left;     
        int j=middle+1;
        int k=0;
        while ( i<=middle && j<=right){
            if (arr[i] <=arr[j]){
                temp[k++] = arr[i++];
            }
            else{
                temp[k++] = arr[j++];
            }
        }
        while (i <=middle){
            temp[k++] = arr[i++];
        }
        while ( j<=right){
            temp[k++] = arr[j++];
        }
        //把数据复制回原数组
        for (i=0; i<k; ++i){
            arr[left+i] = temp[i];
        }
    }

需要说明的是,在合并数组的时候需要一个temp数组。我们当然有足够的理由在每次调用的时候重新new一个数组(例如,减少一个参数),但是,注意到多次的创建数组对象会造成额外的开销,我们可以在开始就创建一个足够大的数组(等于原数组长度就行),以后都使用这个数组。实际上,上面的代码就是这么写的。

算法性能/复杂度

归并排序的效率是很高的,由于递归划分为子序列只需要logN复杂度,而合并每两个子序列需要大约2n次赋值,为O(n)复杂度,因此,只需要简单相乘即可得到归并排序的时间复杂度
O(㏒n)。并且由于归并算法是固定的,不受输入数据影响,所以它在最好、最坏、平均情况下表现几乎相同,均为O(㏒n)。

但是,归并排序最大的缺陷在于其空间复杂度。从上面的代码可以看到,在合并子数组的时候需要一个辅助数组,然后再把这个数据拷贝回原数组。所以,归并排序的空间复杂度(额外空间)为O(n)。可不可以省略这个数组呢?不行!如果取消辅助数组而又要保证原来的数组中数据不被覆盖,那就必须要在数组中花费大量时间来移动数据。不仅容易出错,还降低了效率。因此这个辅助空间是少不掉的。

算法稳定性

因为我们在遇到相等的数据的时候必然是按顺序“抄写”到辅助数组上的,所以,归并排序同样是稳定算法。

算法适用场景

归并排序在数据量比较大的时候也有较为出色的表现(效率上),但是,其空间复杂度O(n)使得在数据量特别大的时候(例如,1千万数据)几乎不可接受。而且,考虑到有的机器内存本身就比较小,因此,采用归并排序一定要注意。

用Java写算法之归并排序的更多相关文章

  1. Java排序算法之归并排序

    基本思想: 归并排序利用分治法,先将一个序列分成一个个子序列,然后对子序列进行排序,再把有序子序列合并为整体有序序列. 图片来自于http://www.cnblogs.com/shudonghe/p/ ...

  2. Java写算法题中那些影响你效率的细节(关于暴力破解算法题的细节处理)

    QQ讨论群:99979568 多交流才能进步 暂时写到这里,有不懂的欢迎评论, 如果有什么其他提高效率的细节,欢迎评论或者私信我,小编一定努力学习,争取早日分享给大家 如果大家嫌三连累的话,可以看看这 ...

  3. Java常见排序算法之归并排序

    在学习算法的过程中,我们难免会接触很多和排序相关的算法.总而言之,对于任何编程人员来说,基本的排序算法是必须要掌握的. 从今天开始,我们将要进行基本的排序算法的讲解.Are you ready?Let ...

  4. java排序算法(九):归并排序

    java排序算法(九):归并排序

  5. 程序代写, CS代写, 代码代写, CS编程代写, java代写, python代写, c++/c代写, R代写, 算法代写, web代写

    互联网一线工程师程序代写 微信联系 当天完成 查看大牛简介特色: 学霸代写,按时交付,保证原创,7*24在线服务,可加急.用心代写/辅导/帮助客户CS作业. 客户反馈与评价 服务质量:保证honor ...

  6. 第一章 大体知道java语法1----------能写java小算法

    很多人开始学习java时,都是抱着诸如<Thinking in java>.<疯狂java>等书籍,从前到后慢慢翻看,不管其内容重要与否,也不关心自己以后能否使用到.我的建议是 ...

  7. java排序算法(四):冒泡排序

    java排序算法(四):冒泡排序 冒泡排序是计算机的一种排序方法,它的时间复杂度是o(n^2),虽然不及堆排序.快速排序o(nlogn,底数为2).但是有两个优点 1.编程复杂度很低.很容易写出代码 ...

  8. Java排序算法(一)

    Java排序算法(一) 排序的基本概念和分类 1.1排序的定义 在<大话数据结构>中,排序定义为,假设含有n个记录的序列为{r1,r2,...,rn},其相应的关键字{k1,k2,..., ...

  9. Java写的斗地主游戏源码

    源码下载在最后 我们的前年的课设要求做一个斗地主程序,当时正在愁如何做界面,当时刚好在学习C#,于是就用C#完成了这个程序.一方面,当时我C#功底还很差(其实现在也不怎么样),很多地方用了“笨办法”, ...

随机推荐

  1. HDU 2795 Billboard(区间求最大值的位置update的操作在query里做了)

    Billboard 通过这题,我知道了要活用线段树的思想,而不是拘泥于形式, 就比如这题 显然更新和查询放在一起很简单 但如果分开写 那么我觉得难度会大大增加 [题目链接]Billboard [题目类 ...

  2. Java的线程安全

    线程安全 我们这里讨论的线程安全,就限定于多个线程之间存在共享数据访问这个前提,因为如果一段代码根本不会与其他线程共享数据,那么从线程安全的角度来看,程序是串行执行还是多线程执行对它来说是完全没有区别 ...

  3. 用读写锁三句代码解决多线程并发写入文件 z

    C#使用读写锁三句代码简单解决多线程并发写入文件时提示“文件正在由另一进程使用,因此该进程无法访问此文件”的问题 在开发程序的过程中,难免少不了写入错误日志这个关键功能.实现这个功能,可以选择使用第三 ...

  4. EF 分组查询

    var result = from m in userPrefers.GroupBy(t => new { t.Pet_Preferential.Merchant.MerchantId, t.P ...

  5. [SQL]查询表里的字段名

    Select Name from syscolumns Where ID=OBJECT_ID('表名') select * from information_schema.tables WHERE T ...

  6. oracle 邮件发送

    CREATE OR REPLACE PROCEDURE PRC_sendmail(p_receiver VARCHAR2, -- 邮件接收人                               ...

  7. Jsoup使用随记

    这段时间工作比较空闲,在网上找资料学习的时候看到数据抓取这一块,来了兴趣 用jsoup实现数据抓取着实方便,唯一美中不足的是官方API是英文版的,对我这样英语水平不好的程序员来说着实困扰,只能一点点的 ...

  8. jQuery.ajax()调用asp.net后台方法

    利用JQuery的$.ajax()可以很方便的调用asp.net的后台方法.介意方法名不要重名 建一个WebFormAjax名aspx文件 CS <%@ Page Language=" ...

  9. 傻瓜式操作Nagios

    傻瓜式操作Nagios   不少接触Nagios的朋友都会觉得安装配置困难,应用在企业网中所花费的时间成本很高,下面通过OSSIM来搞定它把. 为了节省资源,首先在淘汰的机器上安装一个低版本的OSSI ...

  10. Cordova 打包 Android release app 过程详解

    Cordova 打包 Android release app 过程详解 时间 -- :: SegmentFault 原文 https://segmentfault.com/a/119000000517 ...