Robberies

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 10526    Accepted Submission(s):
3868

Problem Description
The aspiring Roy the Robber has seen a lot of American
movies, and knows that the bad guys usually gets caught in the end, often
because they become too greedy. He has decided to work in the lucrative business
of bank robbery only for a short while, before retiring to a comfortable job at
a university.


For a few
months now, Roy has been assessing the security of various banks and the amount
of cash they hold. He wants to make a calculated risk, and grab as much money as
possible.

His mother, Ola, has decided upon a tolerable probability
of getting caught. She feels that he is safe enough if the banks he robs
together give a probability less than this.

 
Input
The first line of input gives T, the number of cases.
For each scenario, the first line of input gives a floating point number P, the
probability Roy needs to be below, and an integer N, the number of banks he has
plans for. Then follow N lines, where line j gives an integer Mj and a floating
point number Pj .
Bank j contains Mj millions, and the probability of
getting caught from robbing it is Pj .
 
Output
For each test case, output a line with the maximum
number of millions he can expect to get while the probability of getting caught
is less than the limit set.

Notes and Constraints
0 < T <=
100
0.0 <= P <= 1.0
0 < N <= 100
0 < Mj <= 100
0.0
<= Pj <= 1.0
A bank goes bankrupt if it is robbed, and you may assume
that all probabilities are independent as the police have very low funds.

 
Sample Input
3
0.04 3
1 0.02
2 0.03
3 0.05
0.06 3
2 0.03
2 0.03
3 0.05
0.10 3
1 0.03
2 0.02
3 0.05
 
Sample Output
2
4
6
 
  这是一道关于01背包的问题,题目的意思是有个强盗想去抢劫银行,但是又不想被抓到,所以,他要计算不被抓到的情况下可以获得的最大的金钱数目。首先给定一个数T表示有T组测试数据,然后是两个数P和N,P表示被抓的几率,N表示有三家银行,接下来N行是每家银行抢到的金钱和被抓的几率,输出不被抓的情况下可以抢到的最大的金额。
  首先我们可以算出不被抓的几率和最多可以抢到的金钱,然后在这种情况下相当于01背包问题。不过要注意的是状态转移方程是dp[i] = max(dp[i],dp[i-m[i]]*p[i]),而不是dp[i] = max(dp[i],dp[i-m[i]]+p[i]),这一点相当重要,也是解题的关键。
 
提供参考代码:
 #include <iostream>
#include <cstdio>
using namespace std;
#define MAX 10003
double p[MAX],f[MAX];
int m[];
int main()
{
double P;
int T, N, i, j;
cin>>T;
while(T--)
{
int sum = ;
scanf("%lf %d",&P,&N);
P = -P; //不被抓的概率
for(i=; i<N; i++)
{
scanf("%d %lf",&m[i],&p[i]);
p[i] = -p[i]; //不被抓的概率
sum += m[i]; //可以抢到的最大金钱数目
} for(i=; i<=sum; i++)
f[i] = ;
f[] = ; //表示抢金钱为0的时候,不被抓的概率为1
for(i=; i<N; i++)
for(j=sum; j>=m[i]; j--)
f[j] = max(f[j],f[j-m[i]]*p[i]);
for(i=sum; i>=; i--) //从最大的金钱数目开始,依次查看不被抓概率是否和给定的相等
if(f[i]-P>0.000000001)
{
cout<<i<<endl;
break;
}
}
return ;
}

Hdu 2955 Robberies 0/1背包的更多相关文章

  1. HDU 2955 Robberies(0-1背包)

    http://acm.hdu.edu.cn/showproblem.php?pid=2955 题意:一个抢劫犯要去抢劫银行,给出了几家银行的资金和被抓概率,要求在被抓概率不大于给出的被抓概率的情况下, ...

  2. hdu 2955 Robberies(概率背包)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  3. HDU 2955 Robberies (01背包,思路要转换一下,推荐!)

    题意: 小A要去抢劫银行,但是抢银行是有风险的,因此给出一个float值P,当被抓的概率<=p,他妈妈才让他去冒险. 给出一个n,接下来n行,分别给出一个Mj和Pj,表示第j个银行所拥有的钱,以 ...

  4. hdu 2955 Robberies(01背包)

    Robberies Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total S ...

  5. HDU 2955 Robberies【01背包】

    解题思路:给出一个临界概率,在不超过这个概率的条件下,小偷最多能够偷到多少钱.因为对于每一个银行都只有偷与不偷两种选择,所以是01背包问题. 这里有一个小的转化,即为f[v]代表包内的钱数为v的时候, ...

  6. HDU 2955 Robberies 背包概率DP

    A - Robberies Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submi ...

  7. HDU 2955 变形较大的01背包(有意思,新思路)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2955 Robberies Time Limit: 2000/1000 MS (Java/Others) ...

  8. hdu 2955 Robberies 0-1背包/概率初始化

    /*Robberies Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total S ...

  9. HDU 2955 Robberies(01背包)

    Robberies Problem Description The aspiring Roy the Robber has seen a lot of American movies, and kno ...

随机推荐

  1. expected an indented block

    expected an indented block 在初步使用Python的时候遇到了" expected an indented block"报错信息,查询相关的博客得知是因为 ...

  2. Linux 下 JAVA 安装及配置

    1. 要 安装JDK7,当然是要有JDK的二进制文件拉..这个简单,直接在ORACLE的官网中下载就可以拉 http://www.oracle.com/technetwork/java/javase/ ...

  3. MySQL Cluster搭建与测试

    MySQL Cluster是一个基于NDB Cluster存储引擎的完整的分布式数据库系统.不仅仅具有高可用性,而且可以自动切分数据,冗余数据等高级功能.和Oracle Real Cluster Ap ...

  4. 基于小波变换的数字图像处理(MATLAB源代码)

    基于小波变换的数字图像处理(MATLAB源代码) clear all; close all; clc;M=256;%原图像长度N=64; %水印长度[filename1,pathname]=uiget ...

  5. Python强化训练笔记(五)——找出多个字典中的公共键

    在这个问题中,我们期望得到的结果是找到这三轮比赛中,每轮都进球的球员都有谁.下面用python来模拟一下,先生成一批数据: >>> from random import randin ...

  6. python -socket -client

    socket client 发起连接. 流程为: 创建接口 发起连接 创建接口参数同socket server相同 发起连接的函数为socket.connect(ip,port) 这个地方的ip与po ...

  7. address_add

    <include file="Header:header-address_add" /> <include file="Header:header-pu ...

  8. Electronic oscillator

    https://en.wikipedia.org/wiki/Electronic_oscillator An electronic oscillator is an electronic circui ...

  9. iOS相关笔记

    #协议[1] [2] @property (nonatomic, assign) id<EveryFrameDelegate> delegate; 表明,这个delegate是一个需要实现 ...

  10. docker-freebsd-20150625

    http://www.docker.org.cn/book/docker/prepare-docker-1.html https://wiki.freebsd.org/Docker pkg insta ...