Leetcode: LFU Cache && Summary of various Sets: HashSet, TreeSet, LinkedHashSet
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the following operations: get and set. get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reaches its capacity, it should invalidate the least frequently used item before inserting a new item. For the purpose of this problem, when there is a tie (i.e., two or more keys that have the same frequency), the least recently used key would be evicted. Follow up:
Could you do both operations in O(1) time complexity? Example: LFUCache cache = new LFUCache( 2 /* capacity */ ); cache.set(1, 1);
cache.set(2, 2);
cache.get(1); // returns 1
cache.set(3, 3); // evicts key 2
cache.get(2); // returns -1 (not found)
cache.get(3); // returns 3.
cache.set(4, 4); // evicts key 1.
cache.get(1); // returns -1 (not found)
cache.get(3); // returns 3
cache.get(4); // returns 4
referred to: https://discuss.leetcode.com/topic/69137/java-o-1-accept-solution-using-hashmap-doublelinkedlist-and-linkedhashset
Two HashMaps are used, one to store <key, value> pair, another store the <key, node>.
I use double linked list to keep the frequent of each key. In each double linked list node, keys with the same count are saved using java built in LinkedHashSet. This can keep the order.
Every time, one key is referenced, first find the current node corresponding to the key, If the following node exist and the frequent is larger by one, add key to the keys of the following node, else create a new node and add it following the current node.
All operations are guaranteed to be O(1).
public class LFUCache {
int cap;
ListNode head;
HashMap<Integer, Integer> valueMap;
HashMap<Integer, ListNode> nodeMap;
public LFUCache(int capacity) {
this.cap = capacity;
this.head = null;
this.valueMap = new HashMap<Integer, Integer>();
this.nodeMap = new HashMap<Integer, ListNode>();
}
public int get(int key) {
if (valueMap.containsKey(key)) {
increaseCount(key);
return valueMap.get(key);
}
return -1;
}
public void set(int key, int value) {
if (cap == 0) return;
if (valueMap.containsKey(key)) {
valueMap.put(key, value);
increaseCount(key);
}
else {
if (valueMap.size() < cap) {
valueMap.put(key, value);
addToHead(key);
}
else {
removeOld();
valueMap.put(key, value);
addToHead(key);
}
}
}
public void increaseCount(int key) {
ListNode node = nodeMap.get(key);
node.keys.remove(key);
if (node.next == null) {
node.next = new ListNode(node.count+1);
node.next.prev = node;
node.next.keys.add(key);
}
else if (node.next.count == node.count + 1) {
node.next.keys.add(key);
}
else {
ListNode newNode = new ListNode(node.count+1);
newNode.next = node.next;
node.next.prev = newNode;
newNode.prev = node;
node.next = newNode;
node.next.keys.add(key);
}
nodeMap.put(key, node.next);
if (node.keys.size() == 0) remove(node);
}
public void remove(ListNode node) {
if (node.next != null) {
node.next.prev = node.prev;
}
if (node.prev != null) {
node.prev.next = node.next;
}
else { // node is head
head = head.next;
}
}
public void addToHead(int key) {
if (head == null) {
head = new ListNode(1);
head.keys.add(key);
}
else if (head.count == 1) {
head.keys.add(key);
}
else {
ListNode newHead = new ListNode(1);
head.prev = newHead;
newHead.next = head;
head = newHead;
head.keys.add(key);
}
nodeMap.put(key, head);
}
public void removeOld() {
if (head == null) return;
int old = 0;
for (int keyInorder : head.keys) {
old = keyInorder;
break;
}
head.keys.remove(old);
if (head.keys.size() == 0) remove(head);
valueMap.remove(old);
nodeMap.remove(old);
}
public class ListNode {
int count;
ListNode prev, next;
LinkedHashSet<Integer> keys;
public ListNode(int freq) {
count = freq;
keys = new LinkedHashSet<Integer>();
prev = next = null;
}
}
}
/**
* Your LFUCache object will be instantiated and called as such:
* LFUCache obj = new LFUCache(capacity);
* int param_1 = obj.get(key);
* obj.set(key,value);
*/
Summary of LinkedHashSet: http://www.programcreek.com/2013/03/hashset-vs-treeset-vs-linkedhashset/
A Set contains no duplicate elements. That is one of the major reasons to use a set. There are 3 commonly used implementations of Set: HashSet, TreeSet and LinkedHashSet. When and which to use is an important question. In brief, if you need a fast set, you should use HashSet; if you need a sorted set, then TreeSet should be used; if you need a set that can be store the insertion order, LinkedHashSet should be used.
1. Set Interface
Set interface extends Collection interface. In a set, no duplicates are allowed. Every element in a set must be unique. You can simply add elements to a set, and duplicates will be removed automatically.

2. HashSet vs. TreeSet vs. LinkedHashSet
HashSet is Implemented using a hash table. Elements are not ordered. The add, remove, and contains methods have constant time complexity O(1).
TreeSet is implemented using a tree structure(red-black tree in algorithm book). The elements in a set are sorted, but the add, remove, and contains methods has time complexity of O(log (n)). It offers several methods to deal with the ordered set like first(), last(), headSet(), tailSet(), etc.
LinkedHashSet is between HashSet and TreeSet. It is implemented as a hash table with a linked list running through it, so it provides the order of insertion. The time complexity of basic methods is O(1).
3. TreeSet Example
TreeSet<Integer> tree = new TreeSet<Integer>(); |
Output is sorted as follows:
Tree set data: 12 34 45 63
4. HashSet Example
HashSet<Dog> dset = new HashSet<Dog>(); |
Output:
5 3 2 1 4
Note the order is not certain.
5. LinkedHashSet Example
LinkedHashSet<Dog> dset = new LinkedHashSet<Dog>(); |
The order of the output is certain and it is the insertion order:
2 1 3 5 4
Leetcode: LFU Cache && Summary of various Sets: HashSet, TreeSet, LinkedHashSet的更多相关文章
- Set集合[HashSet,TreeSet,LinkedHashSet],Map集合[HashMap,HashTable,TreeMap]
------------ Set ------------------- 有序: 根据添加元素顺序判定, 如果输出的结果和添加元素顺序是一样 无序: 根据添加元素顺序判定,如果输出的结果和添加元素的顺 ...
- [LeetCode] LFU Cache 最近最不常用页面置换缓存器
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the f ...
- LeetCode LFU Cache
原题链接在这里:https://leetcode.com/problems/lfu-cache/?tab=Description 题目: Design and implement a data str ...
- Java容器---Set: HashSet & TreeSet & LinkedHashSet
1.Set接口概述 Set 不保存重复的元素(如何判断元素相同呢?).如果你试图将相同对象的多个实例添加到Set中,那么它就会阻止这种重复现象. Set中最常被使用的是测试归属性,你可以 ...
- [LeetCode] 460. LFU Cache 最近最不常用页面置换缓存器
Design and implement a data structure for Least Frequently Used (LFU) cache. It should support the f ...
- leetcode 146. LRU Cache 、460. LFU Cache
LRU算法是首先淘汰最长时间未被使用的页面,而LFU是先淘汰一定时间内被访问次数最少的页面,如果存在使用频度相同的多个项目,则移除最近最少使用(Least Recently Used)的项目. LFU ...
- [LeetCode] LRU Cache 最近最少使用页面置换缓存器
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the fol ...
- LeetCode Monotone Stack Summary 单调栈小结
话说博主在写Max Chunks To Make Sorted II这篇帖子的解法四时,写到使用单调栈Monotone Stack的解法时,突然脑中触电一般,想起了之前曾经在此贴LeetCode Al ...
- LFU Cache
2018-11-06 20:06:04 LFU(Least Frequently Used)算法根据数据的历史访问频率来淘汰数据,其核心思想是“如果数据过去被访问多次,那么将来被访问的频率也更高”. ...
随机推荐
- Hdu 3564 Another LIS 线段树+LIS
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission( ...
- RUDP之三 —— Virtual Connection over UDP
原文链接 原文:http://gafferongames.com/networking-for-game-programmers/virtual-connection-over-udp/ Introd ...
- zorka源码解读之tracer内部实现
核心类: ZorkaAsyncThread.java protected BlockingQueue<T> submitQueue; /** * Processes single item ...
- spark API 介绍链接
spark API介绍: http://homepage.cs.latrobe.edu.au/zhe/ZhenHeSparkRDDAPIExamples.html#aggregateByKey
- Unity3d与Android交互
先看下效果 你一定会说,然并卵! 没错,这里只是一个最简单的例子,unity与android activity 互相传参数. 玩过手游的都知道,在你要为你心爱的游戏角色准备花钱买钻石,点击购买的时候, ...
- tableview 位置发生偏移
状况描述:1.首次进入该界面时正常 2.push了新的界面后,再返回该界面 tableview和导航栏直接出现了间隔区域 tableview为代码创建 _tableView = [[UITableV ...
- linux install StarDict
1. sudo apt-get install stardict 2. Downloads from: http://abloz.com/huzheng/stardict-dic/zh_CN/ 3. ...
- UI--UIPickerView和UIDatePicker的总结
回到顶部 UIPickerView的主要方法和城市选择器的修正 UIPickerView只有两个数据源方法.要想完整地显示出PickerView,需要结合使用代理方法 数据源方法: // 一共有多少组 ...
- 【超级干货】手机移动端WEB资源整合
meta基础知识 H5页面窗口自动调整到设备宽度,并禁止用户缩放页面 <meta name="viewport" content="width=device-wid ...
- javascript平时例子⑩(表情发送)
<!DOCTYPE html><html> <head> <meta charset="utf-8" /> <title> ...