1​​, N2N_2N​2​​, ..., NKN_KN​K​​ }. A continuous subsequence is defined to be { NiN_iN​i​​, Ni+1N_{i+1}N​i+1​​, ..., NjN_jN​j​​ } where 1≤i≤j≤K1 \le i \le j \le K1≤i≤j≤K. The Maximum Subsequence is the continuous subsequence which has the largest sum of its elements. For example, given sequence { -2, 11, -4, 13, -5, -2 }, its maximum subsequence is { 11, -4, 13 } with the largest sum being 20.

Now you are supposed to find the largest sum, together with the first and the last numbers of the maximum subsequence.

Input Specification:

Each input file contains one test case. Each case occupies two lines. The first line contains a positive integer KKK (≤10000\le 10000≤10000). The second line contains KKK numbers, separated by a space.

Output Specification:

For each test case, output in one line the largest sum, together with the first and the last numbers of the maximum subsequence. The numbers must be separated by one space, but there must be no extra space at the end of a line. In case that the maximum subsequence is not unique, output the one with the smallest indices iii and jjj (as shown by the sample case). If all the KKK numbers are negative, then its maximum sum is defined to be 0, and you are supposed to output the first and the last numbers of the whole sequence.

Sample Input:

10
-10 1 2 3 4 -5 -23 3 7 -21

Sample Output:

),第二行输入KKK个数,以空格为分割。输出:对于每一个测试的情况下,在一个行中的最大总和的输出,与第一和最大序列的最后数字。数字必须用一个空格分开,但最后一个数后没有空格。在该最大序列不是唯一的情况下,输出一个具有最小索引的数。如果输入的所有的数都是负数,则它的最大总和被定义为0,你应该输出的第一和整个序列的最后一个数。============================第一次code:

 #include <stdio.h>
 #include <stdlib.h>

 void MaxSubseSum(int n);
 int main(void)
 {
     int n;
     scanf("%d",&n);
     MaxSubseSum(n);
     ;
 }
 void MaxSubseSum(int n)
 {
     ,MaxSum=,start=,end=,start1=,flag=;
     int a[n];
     ;i<n;i++)
     {
        scanf("%d",&a[i]);
     }
     ;i<n;i++)
     {
         ThisSum += a[i];
         )
         flag = ;
         if(ThisSum > MaxSum)
         {
             start = start1;
             MaxSum = ThisSum;
             end = i;
         }
         )
         {
             ThisSum = ;
             start1=i+;
         }
     }
     )
     {
         )
         {
             printf(],a[n-]);
         }
        else
         {
             printf("0 0 0");
         }
     }
     else
     {
         printf("%d %d %d",MaxSum,a[start],a[end]);
     }
 }



PAT - 测试 01-复杂度2 Maximum Subsequence Sum (25分)的更多相关文章

  1. 中国大学MOOC-陈越、何钦铭-数据结构-2015秋 01-复杂度2 Maximum Subsequence Sum (25分)

    01-复杂度2 Maximum Subsequence Sum   (25分) Given a sequence of K integers { N​1​​,N​2​​, ..., N​K​​ }. ...

  2. PTA 01-复杂度2 Maximum Subsequence Sum (25分)

    题目地址 https://pta.patest.cn/pta/test/16/exam/4/question/663 5-1 Maximum Subsequence Sum   (25分) Given ...

  3. 01-复杂度2 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  4. 1007 Maximum Subsequence Sum (25分) 求最大连续区间和

    1007 Maximum Subsequence Sum (25分)   Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A ...

  5. 1007 Maximum Subsequence Sum (25 分)

    1007 Maximum Subsequence Sum (25 分)   Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A ...

  6. 数据结构练习 01-复杂度2. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

  7. 01-复杂度2. Maximum Subsequence Sum (25)

    Given a sequence of K integers { N1, N2, ..., NK }. A continuous subsequence is defined to be { Ni, ...

  8. PAT Advanced 1007 Maximum Subsequence Sum (25 分)

    Given a sequence of K integers { N​1​​, N​2​​, ..., N​K​​ }. A continuous subsequence is defined to ...

  9. PAT 1007 Maximum Subsequence Sum (25分)

    题目 Given a sequence of K integers { N​1​​ , N​2​​ , ..., N​K​​ }. A continuous subsequence is define ...

随机推荐

  1. bind绑定多个事件切换

    eg:  $(function(){         $("div").bind('mouseover mouseover',function(){      $(this.tog ...

  2. CentOS7关闭防火墙方法

    在之前的版本中关闭防火墙等服务的命令是 service iptables stop /etc/init.d/iptables stop 在RHEL7中,其实没有这个服务 [root@rhel7 ~]# ...

  3. LeetCode----Tree

    Path Sum II 思路:回溯 public List<List<Integer>> pathSum(TreeNode root, int sum) { List<L ...

  4. Head First 设计模式之观察者模式(Observer Pattern)

    前言: 这一节开始学习观察者模式,开始讲之前会先像第一节那样通过一个应用场景来引入该模式.具体场景为:气象站提供了一个WeatherData对象,该对象可以追踪获取天气的温度.气压.湿度信息,Weat ...

  5. fedora wine qq

    http://blog.lilydjwg.me/2015/10/26/run-tencent-qq-lite-with-wine.186640.html

  6. 为模版设计师而生的Twig(下)-Twig使用指南

    原文地址:http://my.oschina.net/veekit/blog/276800 12. 模板继承 Twig最强大的部分是模板继承.模板继承允许你建立一个基本的"骨架"模 ...

  7. 重装系统后,delphi7打开报错

    delphi7运行不正常的提示unable to rename'c:\program files\Borland\delphi7\Bin\delphi32.$$$'to'c:\program file ...

  8. Displaying Bitmaps Efficiently 显示图片相关

    http://developer.android.com/training/displaying-bitmaps/index.html .手机内存资源有限 .Bitmap占用的内存大 .App有时需要 ...

  9. 【MySQL】SQL优化系列之 in与range 查询

    首先我们来说下in()这种方式的查询 在<高性能MySQL>里面提及用in这种方式可以有效的替代一定的range查询,提升查询效率,因为在一条索引里面,range字段后面的部分是不生效的. ...

  10. 通过Daffodil for VS使VS2010的IDE可以用VC6 VC7.1 VC9等编译器进行项目编译

    本文内容中的部分资料和知识来源于网络,具体引用出处不明. VS的IDE从VC6到VS2010的变化可谓是天翻地覆,最新的VS2010有一个特性就是支持多显示器开发,这无疑为我们的开发带来很大的便利. ...