[Machine Learning][The Analytics Edge][Predicting Earnings from Census Data]
census = read.csv("census.csv")
library(caTools)
set.seed(2000)
spl = sample.split(census$over50k,SplitRatio = 0.6)
train = subset(census,spl == TRUE)
test = subset(census, spl == FALSE)
# use the logistic regression
glm = glm(over50k ~. , data = train, family = "binomial")
summary(glm) #pr(>|z|) if it is smaller than 0.1, the variables are significant
#accuracy
glm.pred = predict(glm, newdata = test, type = "response")
table(test$over50k,glm.pred >= 0.5)
(9051+1888)/nrow(test)
#baseline accuracy of test - more frequent outcome
table(test$over50k)
9713/nrow(test)
#ROC & ACU
library(ROCR)
#Then we can generate the confusion matrix
ROCpred = prediction(glm.pred, test$over50k)
plot(performance(ROCpred,measure="tpr",x.measure="fpr"),colorize = TRUE)
as.numeric(performance(ROCpred, "auc")@y.values)
#Problem 2.1 - A CART Model
library(rpart)
library(rpart.plot)
CTree = rpart(over50k ~. , data = train, method = "class")
prp(CTree)
# accuracy of the CART model
CTree.pred = predict(CTree, newdata = test, type = "class")
table(test$over50k,CTree.pred)
(9243+1596)/nrow(test)
#use another way- generate probabilities and use a threshold of 0.5 like in logistic regression
CTree.pred1 = predict(CTree, newdata = test)
p = CTree.pred1[,2] # the column of over 50k
table(test$over50k, p) # p<=0.5 it is same with the <=50k, p>0.5 means >50k
# ROC curve for the CART model - WOW
#removing the type="class" argument when making predictions
library(ROCR)
library(arulesViz)
CTree.ROCpred = prediction(CTree.pred1[,2],test$over50k)
# plot(CTree.ROCpred) can not run
plot(performance(CTree.ROCpred,measure="tpr",x.measure="fpr"),colorize = TRUE)
# to caculate the auc
as.numeric(performance(CTree.ROCpred,"auc")@y.values)
# another way to seek for auc
CTree.ROCpred2 = prediction(p,test$over50k)
as.numeric(performance(CTree.ROCpred2,"auc")@y.values)
#Problem 3.1 - A Random Forest Model
set.seed(1)
trainSmall = train[sample(nrow(train),2000),]
set.seed(1)
library(randomForest)
RFC = randomForest(over50k ~., data = trainSmall)
RFC.pred = predict(RFC,newdata = test) #using a threshold of 0.5, no need to set the type = "class"
table(test$over50k,RFC.pred)
(9586+1093)/nrow(test) # a little difference is allowed
#compute metrics that give us insight into which variables are important.
vu = varUsed(RFC, count = TRUE)
vusorted = sort(vu, decreasing = FALSE, index.return = TRUE)
dotchart(vnsorted$x, names(RFC$forest$xlevel[vusorted$ix]))
#another way to find the important variables - impurity
varImpPlot(RFC)
# select cp by Cross-validation for the CART Trees
library(caret)
library(e1071)
set.seed(2)
#Specify that we are going to use k-fold cross validation with 10 folds:
numFolds = trainControl(method = "cv", number = 10)
#Specify the grid of cp values that we wish to evaluate:
cartGrid = expand.grid(.cp = seq(0.002,0.1,0.002))
#run the train function and view the result:
tr = train(over50k ~.,data = train, method = "rpart", trControl = numFolds, tuneGrid = cartGrid)
tr # The final value used for the model was cp = 0.002.
CTree2 = rpart(over50k ~., data = train, method = "class", cp = 0.002)
CTree2.pred = predict(CTree2, newdata = test, type = "class")
table(test$over50k, CTree2.pred)
(9178+1838)/nrow(test)
prp(CTree2) # shoould be 18 splits
[Machine Learning][The Analytics Edge][Predicting Earnings from Census Data]的更多相关文章
- Machine Learning for Developers
Machine Learning for Developers Most developers these days have heard of machine learning, but when ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- Course Machine Learning Note
Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- Why The Golden Age Of Machine Learning is Just Beginning
Why The Golden Age Of Machine Learning is Just Beginning Even though the buzz around neural networks ...
- Introducing: Machine Learning in R(转)
Machine learning is a branch in computer science that studies the design of algorithms that can lear ...
- Azure Machine Learning
About me In my spare time, I love learning new technologies and going to hackathons. Our hackathon p ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- Google's Machine Learning Crash Course #01# Introducing ML & Framing & Fundamental terminology
INDEX Introducing ML Framing Fundamental machine learning terminology Introducing ML What you learn ...
随机推荐
- Inheritance setUp() and tearDown() methods from Classsetup() and Classteardown
I have a general test class in my nosetests suit and some sub-classes, inheriting from it. The con ...
- VS在.NETFramework升级时遇到类库冲突如何解决
相信大家在开发环境中随着程序的不断升级,很多时间需要升级. NETFramework版本.今天项目中遇到的问题是从. NETFramework4.0升级到4.5时提示 Entityframework. ...
- 20165312 2017-2018-2《Java程序设计》课程总结
20165312 2017-2018-2<Java程序设计>课程总结 每周作业链接汇总 预备作业1:我期望的师生关系 预备作业2:C语言基础调查和java学习展望 预备作业3:Linux安 ...
- MySQL导出数据字典
平时用mysql比较多,有时候需要详细的数据库设计表结构和数据字典,但又没有最新的文档,这个时候直接从数据导出是最新最全的.在MySQL数据库中利用information_schema库中的COLUM ...
- Cache基本原理之:结构
转载自:https://www.jianshu.com/p/2b51b981fcaf Cache entries 数据在主存和缓存之间以固定大小的”块(block)”为单位传递,也就是每次从main ...
- Mac搭建kubernetes dashboard全流程
1. 下载dashboard文件: curl -o kubernetes-dashboard.yaml https://raw.githubusercontent.com/kubernetes/das ...
- 用python探索和分析网络数据
Edited by Markdown Refered from: John Ladd, Jessica Otis, Christopher N. Warren, and Scott Weingart, ...
- exchang2010OWA主界面添加修改密码选项
原文链接:http://www.mamicode.com/info-detail-1444660.html exchange邮箱用户可以登录OWA修改密码,当AD用户密码过期或者重置密码勾选了“用户下 ...
- 遇到问题或bug时要做的事。
1,做事细心,只有细心才能减少bug量,做总结. 2,开发中遇到bug和错误,第一要想到是程序代码的问题.而首先想到的不是其他问题(比如版本,框架或兼容问题等). 3,程序不能按照自己的意愿执行,时先 ...
- 发送Http
/** * 向指定 URL 发送POST方法的请求 * * @param url * 发送请求的 URL * @param param * 请求参数,请求参数应该是 name1=value1& ...