[Machine Learning][The Analytics Edge][Predicting Earnings from Census Data]
census = read.csv("census.csv")
library(caTools)
set.seed(2000)
spl = sample.split(census$over50k,SplitRatio = 0.6)
train = subset(census,spl == TRUE)
test = subset(census, spl == FALSE)
# use the logistic regression
glm = glm(over50k ~. , data = train, family = "binomial")
summary(glm) #pr(>|z|) if it is smaller than 0.1, the variables are significant
#accuracy
glm.pred = predict(glm, newdata = test, type = "response")
table(test$over50k,glm.pred >= 0.5)
(9051+1888)/nrow(test)
#baseline accuracy of test - more frequent outcome
table(test$over50k)
9713/nrow(test)
#ROC & ACU
library(ROCR)
#Then we can generate the confusion matrix
ROCpred = prediction(glm.pred, test$over50k)
plot(performance(ROCpred,measure="tpr",x.measure="fpr"),colorize = TRUE)
as.numeric(performance(ROCpred, "auc")@y.values)
#Problem 2.1 - A CART Model
library(rpart)
library(rpart.plot)
CTree = rpart(over50k ~. , data = train, method = "class")
prp(CTree)
# accuracy of the CART model
CTree.pred = predict(CTree, newdata = test, type = "class")
table(test$over50k,CTree.pred)
(9243+1596)/nrow(test)
#use another way- generate probabilities and use a threshold of 0.5 like in logistic regression
CTree.pred1 = predict(CTree, newdata = test)
p = CTree.pred1[,2] # the column of over 50k
table(test$over50k, p) # p<=0.5 it is same with the <=50k, p>0.5 means >50k
# ROC curve for the CART model - WOW
#removing the type="class" argument when making predictions
library(ROCR)
library(arulesViz)
CTree.ROCpred = prediction(CTree.pred1[,2],test$over50k)
# plot(CTree.ROCpred) can not run
plot(performance(CTree.ROCpred,measure="tpr",x.measure="fpr"),colorize = TRUE)
# to caculate the auc
as.numeric(performance(CTree.ROCpred,"auc")@y.values)
# another way to seek for auc
CTree.ROCpred2 = prediction(p,test$over50k)
as.numeric(performance(CTree.ROCpred2,"auc")@y.values)
#Problem 3.1 - A Random Forest Model
set.seed(1)
trainSmall = train[sample(nrow(train),2000),]
set.seed(1)
library(randomForest)
RFC = randomForest(over50k ~., data = trainSmall)
RFC.pred = predict(RFC,newdata = test) #using a threshold of 0.5, no need to set the type = "class"
table(test$over50k,RFC.pred)
(9586+1093)/nrow(test) # a little difference is allowed
#compute metrics that give us insight into which variables are important.
vu = varUsed(RFC, count = TRUE)
vusorted = sort(vu, decreasing = FALSE, index.return = TRUE)
dotchart(vnsorted$x, names(RFC$forest$xlevel[vusorted$ix]))
#another way to find the important variables - impurity
varImpPlot(RFC)
# select cp by Cross-validation for the CART Trees
library(caret)
library(e1071)
set.seed(2)
#Specify that we are going to use k-fold cross validation with 10 folds:
numFolds = trainControl(method = "cv", number = 10)
#Specify the grid of cp values that we wish to evaluate:
cartGrid = expand.grid(.cp = seq(0.002,0.1,0.002))
#run the train function and view the result:
tr = train(over50k ~.,data = train, method = "rpart", trControl = numFolds, tuneGrid = cartGrid)
tr # The final value used for the model was cp = 0.002.
CTree2 = rpart(over50k ~., data = train, method = "class", cp = 0.002)
CTree2.pred = predict(CTree2, newdata = test, type = "class")
table(test$over50k, CTree2.pred)
(9178+1838)/nrow(test)
prp(CTree2) # shoould be 18 splits
[Machine Learning][The Analytics Edge][Predicting Earnings from Census Data]的更多相关文章
- Machine Learning for Developers
Machine Learning for Developers Most developers these days have heard of machine learning, but when ...
- How do I learn machine learning?
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644 How Can I Learn X? ...
- Course Machine Learning Note
Machine Learning Note Introduction Introduction What is Machine Learning? Two definitions of Machine ...
- [C2P3] Andrew Ng - Machine Learning
##Advice for Applying Machine Learning Applying machine learning in practice is not always straightf ...
- Why The Golden Age Of Machine Learning is Just Beginning
Why The Golden Age Of Machine Learning is Just Beginning Even though the buzz around neural networks ...
- Introducing: Machine Learning in R(转)
Machine learning is a branch in computer science that studies the design of algorithms that can lear ...
- Azure Machine Learning
About me In my spare time, I love learning new technologies and going to hackathons. Our hackathon p ...
- Getting started with machine learning in Python
Getting started with machine learning in Python Machine learning is a field that uses algorithms to ...
- Google's Machine Learning Crash Course #01# Introducing ML & Framing & Fundamental terminology
INDEX Introducing ML Framing Fundamental machine learning terminology Introducing ML What you learn ...
随机推荐
- globals和locals的区别
Python的两个内置函数,locals 和globals,它们提供了基于字典的访问局部和全局变量的方式. 1.locals()是只读的.globals()不是.这里说的只读,是值对于原有变量的只读. ...
- 数论卷积公式and莫比乌斯反演
数论卷积: 对于两个数论函数f(x),g(x) f(n)g(n)=∑ f(d)g(n/d) d|n 莫比乌斯函数: 设一个数n=(p1^k1)*(p2^k2)*(p3^k3)*..........*( ...
- mysqli用户权限操作
此操作指令在 mysql 的数据库中 所以要 use mysql 查询mysqli中所有用户的权限 select host,user form user; 添加用户 grant all privil ...
- IDEA—— 找不到或无法加载主类Main
最近使用idea,编写了一个项目,发现老是找不到main,网上找了一大圈的解决方案,都不行.灵机一动升级了jdk就可以了,之前用的是1.7的,换成了1.8的就好了.
- 一台电脑上配置多个tomcat同时运行
好使 1 1.配置运行tomcat 首先要配置java的jdk环境,这个就不在写了 不懂去网上查查,这里主要介绍再jdk环境没配置好的情况下 如何配置运行多个tomcat 2.第一个tomcat: ...
- HDFS知识点总结
学习完Hadoop权威指南有一段时间了,现在再回顾和总结一下HDFS的知识点. 1.HDFS的设计 HDFS是什么:HDFS即Hadoop分布式文件系统(Hadoop Distributed File ...
- vue+窗格切换+田字+dicom显示_02
环境:vue+webpack+cornerstone ide:vs code 需求:窗格设置+拼图设置 分析: 由于时间的原因,我也没有Baidu更好的显示窗格的方法,所以使用比较笨的方法,通过组件显 ...
- 调用免费的web service(天气预报)
”免费WebService”, 找到提供天气预报Webservice的网络地址 http://ws.webxml.com.cn/WebServices/WeatherWS.asmx?wsdl 在url ...
- 关于spring的一些注解
- vue.js插值,插入图片,属性
<html><head><title>Insert title here</title><script type="text/javas ...