描述

当长度为L的一根细木棍的温度升高n度,它会膨胀到新的长度L'=(1+n*C)*L,其中C是热膨胀系数。

当一根细木棍被嵌在两堵墙之间被加热,它将膨胀形成弓形的弧,而这个弓形的弦恰好是未加热前木棍的原始位置。

你的任务是计算木棍中心的偏移距离。

输入
三个非负实数:木棍初始长度(单位:毫米),温度变化(单位:度),以及材料的热膨胀系数。

保证木棍不会膨胀到超过原始长度的1.5倍。
输出
木棍中心的偏移距离(单位:毫米),保留到小数点后第三位。
样例输入
1000 100 0.0001
样例输出
61.329

直接使用求方程的方式来解题,可能由于其中出现三角函数,解决起来肯定不会那么顺手,而且很难得到一个精确的答案,但是由于弧长和弦长已定,则该圆也能确定了。但是通过画图可以看出来,由于膨胀的长度绝不会超过原长度的50%,因此膨胀圆心角不会超过180度,也不会少于0度。

此题的核心是找到高度h的表达式,然后探求与角或者圆的半径的关系,然后看是否存在某种单调性,采用二分逼近法求解近似值

想明白了后,二分求角度嘛反而不是重点了,关键是角度与弦长的单调性关系值得推敲

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int main()
{
double l, ll, rig, lef, mid, n, c;
scanf("%lf%lf%lf", &l, &n, &c); if(l<1e-14)
{
printf("0.000\n");
return 0;
}
ll=l*(1+n*c);
lef=0.0; //角的极小值
rig=asin(1.0); //角的极大值
//由于三角函数转换,得到 h= (l/2)*tan(@/2) , 所以h只与角@有关,使用二分逼近法去求解最接近的@即可
//注意,二分验证是让 ll与角@ 计算得到的 木棍原始长度l`=ll*sin@/@ 与 l 进行比较,且l`与@成反比例关系
while(rig-lef>1e-14) //在极大值与极小值之间进行二分,这个地方精度控制太低就过不了了。精度要求很高。
{
mid=(rig+lef)/2;
if(ll*sin(mid)/mid<=l)
rig=mid;
else
lef=mid;
}
printf("%.3lf\n", l/2*tan(lef/2));
return 0;
}

解法2,装载自

大致题意:

一根两端固定在两面墙上的杆 受热弯曲后变弯曲

求前后两个状态的杆的中点位置的距离

解题思路:

几何和二分的混合体

 

如图,蓝色为杆弯曲前,长度为L

红色为杆弯曲后,长度为s

h是所求

依题意知

S=(1+n*C)*L

又从图中得到三条关系式;

(1)       角度→弧度公式  θr = 1/2*s

(2)       三角函数公式  sinθ= 1/2*L/r

(3)       勾股定理  r^2 – ( r – h)^2 = (1/2*L)^2

把四条关系式化简可以得到

逆向思维解二元方程组:

要求(1)式的h,唯有先求r

但是由于(2)式是三角函数式,直接求r比较困难

因此要用顺向思维解方程组:

在h的值的范围内枚举h的值,计算出对应的r,判断这个r得到的(2)式的右边  与 左边的值S的大小关系  ( S= (1+n*C)*L )

很显然的二分查找了。。。。。

那么问题只剩下 h 的范围是多少了

下界自然是0 (不弯曲)

关键确定上界

题中提及到

Input data guarantee that no rod expands by more than one half of its original length.

意即输入的数据要保证没有一条杆能够延伸超过其初始长度的一半

就是说 S max = 3/2 L

理论上把上式代入(1)(2)方程组就能求到h的最小上界,但是实际操作很困难

因此这里可以做一个范围扩展,把h的上界扩展到 1/2L  ,不难证明这个值必定大于h的最小上界,那么h的范围就为  0<=h<1/2L

这样每次利用下界low和上界high就能得到中间值mid,寻找最优的mid使得(2)式左右两边差值在精度范围之内,那么这个mid就是h

精度问题是必须注意的

由于数据都是double,当low无限接近high时, 若二分查找的条件为while(low<high),会很容易陷入死循环,或者在得到要求的精度前就输出了不理想的“最优mid”

精度的处理方法参考我的程序

#include<iostream>
#include<math.h>
#include<iomanip>
using namespace std;
const double esp=1e-5; //最低精度限制 int main(void)
{
double L,n,c,s; //L:杆长 ,n:温度改变度 , c:热力系数 ,s:延展后的杆长(弧长)
double h; //延展后的杆中心 到 延展前杆中心的距离
double r; //s所在圆的半径 while(cin>>L>>n>>c)
{
if(L<0 && n<0 && c<0)
break;
double low=0.0; //下界
double high=0.5*L; // 0 <= h < 1/2L (1/2L并不是h的最小上界,这里做一个范围扩展是为了方便处理数据) double mid;
s=(1+n*c)*L;
while(high-low>esp) //由于都是double,不能用low<high,否则会陷入死循环
{ //必须限制low与high的精度差
mid=(low+high)/2;
r=(4*mid*mid+L*L)/(8*mid); if( 2*r*asin(L/(2*r)) < s ) //h偏小
low=mid;
else //h偏大
high=mid;
}
h=mid; cout<<fixed<<setprecision(3)<<h<<endl;
}
return 0;
}

解法3

这个题有两个难点

1、解方程

图片大了点呵。。Retina屏的水果本就是不错!

这方程是超越方程,只有数值解,那怎么办呢?

2、二分单调性证明

证明如下:

上面的方程,另左边等于s,则可推得弧长s与h间关系如下:

绘制该函数图像如下:

可知该函数是随l和s单增的,故可用二分逼近。

上图是刚才那个超越方程的隐函数围道图像,也可证明。

另提供几何证明(为什么h越大s越大,可以利用二分来逼近这h在给定s下的最大值)

下面是代码:

#include <iostream>
#include <math.h>
#include <iomanip> using namespace std; #define eps 1e-5 int main() {
double L, n, c, s;
double h;
double r;
while (cin >> L >> n >> c) {
if (L < 0 && n < 0 && c < 0)
break;
double low = 0.0;
double high = 0.5 * L;
double mid;
s = (1 + n * c) * L;
while (high - low > eps) {
mid = (low + high) / 2;
r = (4 * mid * mid + L * L) / (8 * mid);
if (2 * r * asin(L / (2 * r)) < s)
low = mid;
else
high = mid;
}
h = mid;
cout << fixed << setprecision(3) << h << endl;
}
}

POJ 1905 Expanding Rods 木棍膨胀的更多相关文章

  1. poj 1905 Expanding Rods(木杆的膨胀)【数学计算+二分枚举】

                                                                                                         ...

  2. POJ 1905 Expanding Rods

                           Expanding Rods Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 1 ...

  3. POJ 1905 Expanding Rods(二分)

    Expanding Rods Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 20224 Accepted: 5412 Descr ...

  4. POJ 1905 Expanding Rods 二分答案几何

    题目:http://poj.org/problem?id=1905 恶心死了,POJ的输出一会要lf,一会要f,而且精度1e-13才过,1e-12都不行,错了一万遍终于对了. #include < ...

  5. POJ - 1905 Expanding Rods(二分+计算几何)

    http://poj.org/problem?id=1905 题意 一根两端固定在两面墙上的杆,受热后变弯曲.求前后两个状态的杆的中点位置的距离 分析 很明显需要推推公式. 由②的限制条件来二分角度, ...

  6. POJ 1905 Expanding Rods( 二分搜索 )

    题意:一个钢棍在两面墙之间,它受热会膨胀成一个圆弧形物体,这个物体长 S = ( 1 + n * C ) * L,现在给出原长 L ,温度改变量 n ,和热膨胀系数 C,求膨胀后先后中点的高度差. 思 ...

  7. poj 1905 Expanding Rods (数学 计算方法 二分)

    题目链接 题意:将长度为L的棒子卡在墙壁之间.现在因为某种原因,木棒变长了,因为还在墙壁之间,所以弯成了一个弧度,现在求的是弧的最高处与木棒原先的地方的最大距离. 分析: 下面的分析是网上别人的分析: ...

  8. poj 1905 Expanding Rods 二分

    /** 题解晚上写 **/ #include <iostream> #include <math.h> #include <algorithm> #include ...

  9. POJ 1905 Expanding Rods (求直杆弯曲拱起的高度)(二分法,相交弦定理)

    Description When a thin rod of length L is heated n degrees, it expands to a new length L' = (1+n*C) ...

随机推荐

  1. win(64位)环境下oracle11g的安装方法

    将压缩文件解压到一个目录中,该目录结构如下: 安装步骤(摘自网络): 1.进入数据库解压目录,双击其中的“setup.exe”文件,稍等片刻出现如下“配置安全更新“界面,取消“我希望通过My Orac ...

  2. windows环境下永久修改pip镜像源的方法(转)

    一.在windows环境下修改pip镜像源的方法(以python3.7为例) (1):在windows文件管理器中,输入 %APPDATA%,cmd里面输入即可. (2):会定位到一个新的目录下,在该 ...

  3. 用C语言实现窗口抖动

    #include "stdafx.h" #include <stdio.h> #include<Windows.h> int main() { ; //休眠 ...

  4. SQL Server索引维护

    索引维护的两个重要方面是索引碎片和统计信息. 一:索引碎片 降低碎片的产生,当索引上的页不在具有物理连续性时,就会产生碎片,下面的情景会产生碎片: INSERT操作.UPDATE操作.DBCC SHR ...

  5. logstash配置白名单决定去哪个index

    input { kafka { bootstrap_servers => "127.0.0.1:9092" client_id => "log" a ...

  6. 迅速上手:使用taro构建微信小程序基础教程

    前言 由于微信小程序在开发上不能安装npm依赖,和开发流程上也饱受诟病:Taro 是由京东·凹凸实验室(aotu.io)倾力打造的 多端开发解决方案,它的api基于react,在本篇文章中主要介绍了使 ...

  7. python---自己实现二分法列表查找

    这是以我自己的思维来实现的,没有用递归. # coding = utf-8 # 二分查找,适用于有序列表,日常编程用不到,因为index函数可以搞定的. # 查找到数字,返回列表中的下标,找不到数字, ...

  8. Scala学习教程笔记一之基础语法,条件控制,循环控制,函数,数组,集合

    前言:Scala的安装教程:http://www.cnblogs.com/biehongli/p/8065679.html 1:Scala之基础语法学习笔记: :声明val变量:可以使用val来声明变 ...

  9. linux服务器性能——CPU、内存、流量、磁盘使用率的监控

    https://blog.csdn.net/u012859748/article/details/72731080

  10. spring、springmvc、springboot、springcloud

    Spring 最初利用“工厂模式”( DI )和“代理模式”( AOP )解耦应用组件.大家觉得挺好用,于是按照这种模式搞了一个 MVC 框架(一些用 Spring 解耦的组件),用开发 web 应用 ...