「PKUSC2018」神仙的游戏

比如说上面\(|S|\)为12的字符串,我们欲求出\(f(9)\)的值,那么上面相同颜色的字符必须两两能够匹配。也就是说,同种颜色的字符集里不能同时出现0和1。如果只考虑同种颜色集里相邻的两个字符能否匹配,那么小样例都过不了。。
我们仔细观察就会发现,每隔\(|S|-len\)的位置就会出现相同的字符。我们可以认为长度为\(len\)的border实质上就是将长度为\(len\)的前缀向后偏移\(|S|-len\),看是否能匹配。
如果有两个字符\(s[i],s[j]\ (i<j)\),他们一个是0,一个是1,那么偏移量就不能为\(j-i\)。于是我们定义一个数组\(illegal\)。\(illegal[i]\)为1表示偏移量为\(i\)时不合法。
假设我们已经求出了\(illegal\)数组,我们判断\(f(len)\)的值,那么我们只需判断\(illegal[|S|-len]\)就可以了吗?当然不行,因为我们说了是字符集中不同时出现0和1,只判断\(illegal[|S|-len]\)相当于只判断了相邻两个字符能否匹配。所以我们还要判断\(|S|-len\)的倍数。
至于求\(illegal\),就是经典的\(FFT/NTT\)在字符串匹配中的引用。可以构造一个反串,然后正反串做\(NTT\)就可以了。具体可以参考【BZOJ4259】残缺的字符串。
不过似乎不用这么麻烦,就直接将正串的1设为1,反串的0设为1然后一边\(NTT\)就行了。。
代码:
#include<bits/stdc++.h>
#define ll long long
#define N 500005
#define Z complex<double>
#define pi acos(-1)
#define mod 998244353
using namespace std;
inline int Get() {int x=0,f=1;char ch=getchar();while(ch<'0'||ch>'9') {if(ch=='-') f=-1;ch=getchar();}while('0'<=ch&&ch<='9') {x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}return x*f;}
char s[N];
int rev[N<<2],n;
ll f[N<<2],g[N<<2];
ll Match[N<<2];
ll ksm(ll t,ll x) {
ll ans=1;
for(;x;x>>=1,t=t*t%mod)
if(x&1) ans=ans*t%mod;
return ans;
}
void NTT(ll *a,int d,int flag) {
static const ll G=3;
int n=1<<d;
for(int i=0;i<n;i++) rev[i]=(rev[i>>1]>>1)|((i&1)<<d-1);
for(int i=0;i<n;i++) if(i<rev[i]) swap(a[i],a[rev[i]]);
for(int s=1;s<=d;s++) {
int len=1<<s,mid=len>>1;
ll w=flag==1?ksm(G,(mod-1)/len):ksm(G,mod-1-(mod-1)/len);
for(int i=0;i<n;i+=len) {
ll t=1;
for(int j=0;j<mid;j++,t=t*w%mod) {
ll u=a[i+j],v=a[i+j+mid]*t%mod;
a[i+j]=(u+v)%mod;
a[i+j+mid]=(u-v+mod)%mod;
}
}
}
if(flag==-1) {
ll inv=ksm(n,mod-2);
for(int i=0;i<n;i++) a[i]=a[i]*inv%mod;
}
}
bool illegal[N<<2];
ll ans;
int main() {
scanf("%s",s+1);
n=strlen(s+1);
int d=ceil(log2(n*2+2));
for(int i=1;i<=n;i++) {
if(s[i]=='?') f[i]=g[n+1-i]=0;
else if(s[i]=='0') {
f[i]=g[n+1-i]=1;
} else {
f[i]=8,g[n+1-i]=2;
}
}
NTT(f,d,1),NTT(g,d,1);
for(int i=0;i<(1<<d);i++) f[i]*=g[i];
NTT(f,d,-1);
for(int i=0;i<(1<<d);i++) Match[i]+=f[i];
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
for(int i=1;i<=n;i++) {
if(s[i]=='?') f[i]=g[n+1-i]=0;
else if(s[i]=='0') {
f[i]=g[n+1-i]=1;
} else {
f[i]=4,g[n+1-i]=4;
}
}
NTT(f,d,1),NTT(g,d,1);
for(int i=0;i<(1<<d);i++) f[i]*=g[i];
NTT(f,d,-1);
for(int i=0;i<(1<<d);i++) Match[i]-=2*f[i];
memset(f,0,sizeof(f));
memset(g,0,sizeof(g));
for(int i=1;i<=n;i++) {
if(s[i]=='?') f[i]=g[n+1-i]=0;
else if(s[i]=='0') {
f[i]=g[n+1-i]=1;
} else {
f[i]=2,g[n+1-i]=8;
}
}
NTT(f,d,1),NTT(g,d,1);
for(int i=0;i<(1<<d);i++) f[i]*=g[i];
NTT(f,d,-1);
for(int i=0;i<(1<<d);i++) Match[i]+=f[i];
for(int i=0;i<=n+1;i++)
if(Match[i]) illegal[abs(i-n-1)]=1;
for(int i=1;i<=n;i++) {
int flag=0;
for(int j=i;j<=n;j+=i) {
if(illegal[j]) {
flag=1;
break;
}
}
if(!flag) ans^=1ll*(n-i)*(n-i);
}
ans^=1ll*n*n;
cout<<ans;
return 0;
}
「PKUSC2018」神仙的游戏的更多相关文章
- LOJ #6436. 「PKUSC2018」神仙的游戏(字符串+NTT)
题面 LOJ #6436. 「PKUSC2018」神仙的游戏 题解 参考 yyb 的口中的长郡最强选手 租酥雨大佬的博客 ... 一开始以为 通配符匹配 就是类似于 BZOJ 4259: 残缺的字符串 ...
- loj#6436. 「PKUSC2018」神仙的游戏(生成函数)
题意 链接 Sol 生成函数题都好神仙啊qwq 我们考虑枚举一个长度\(len\).有一个结论是如果我们按\(N - len\)的余数分类,若同一组内的全为\(0\)或全为\(1\)(?不算),那么存 ...
- 【LOJ】#6436. 「PKUSC2018」神仙的游戏
题解 感觉智商为0啊QAQ 显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等 那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s ...
- LOJ #6436. 「PKUSC2018」神仙的游戏
题目分析 通过画图分析,如果存在border长度为len,则原串一定是长度为n-len的循环串. 考虑什么时候无法形成长度为len的循环串. 显然是两个不同的字符的距离为len的整数倍时,不存在这样的 ...
- loj#6436. 「PKUSC2018」神仙的游戏(NTT)
题面 传送门 题解 一旦字符串踏上了通配符的不归路,它就永远脱离了温暖的字符串大家庭的怀抱 用人话说就是和通配符扯上关系的字符串就不是个正常的字符串了比如说这个 让我们仔细想想,如果一个长度为\(le ...
- LOJ6436. 「PKUSC2018」神仙的游戏 [NTT]
传送门 思路 首先通过各种手玩/找规律/严谨证明,发现当\(n-i\)为border当且仅当对于任意\(k\in[0,i)\),模\(i\)余\(k\)的位置没有同时出现0和1. 换句话说,拿出任意一 ...
- LOJ 6436 「PKUSC2018」神仙的游戏——思路+卷积
题目:https://loj.ac/problem/6436 看题解才会. 有长为 i 的 border ,就是有长为 n-i 的循环节. 考虑如果 x 位置上是 0 . y 位置上是 1 ,那么长度 ...
- [LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC
[LOJ#6437][BZOJ5373]「PKUSC2018」PKUSC 试题描述 九条可怜是一个爱玩游戏的女孩子. 最近她在玩一个无双割草类的游戏,平面上有 \(n\) 个敌人,每一个敌人的坐标为 ...
- LOJ #6435. 「PKUSC2018」星际穿越(倍增)
题面 LOJ#6435. 「PKUSC2018」星际穿越 题解 参考了 这位大佬的博客 这道题好恶心啊qwq~~ 首先一定要认真阅读题目 !! 注意 \(l_i<r_i<x_i\) 这个条 ...
随机推荐
- 基于 CGLIB 库的动态代理机制
之前的文章我们详细的介绍了 JDK 自身的 API 所提供的一种动态代理的实现,它的实现相对而言是简单的,但是却有一个非常致命性的缺陷,就是只能为接口中的方法完成代理,而委托类自己的方法或者父类中的方 ...
- js中的DOM操作汇总
一.DOM创建 DOM节点(Node)通常对应于一个标签,一个文本,或者一个HTML属性.DOM节点有一个nodeType属性用来表示当前元素的类型,它是一个整数: Element,元素 Attrib ...
- Java设计模式学习记录-解释器模式
前言 这次介绍另一个行为模式,解释器模式,都说解释器模式用的少,其实只是我们在日常的开发中用的少,但是一些开源框架中还是能见到它的影子,例如:spring的spEL表达式在解析时就用到了解释器模式,以 ...
- Vim 多行剪切、复制和删除
剪切 快捷键方式: dd:剪切光标所处当前行 n + dd:剪切光标所在行及以下共 n 行 按 p 粘贴在光标所在行 命令行方式: 例如剪切1到10行,并粘贴在12行处: 1,10 m 12 复制 快 ...
- [转]Angular4 引用 material dialog时自定义对话框/deep/.mat-dialog-container
本文转自:https://blog.csdn.net/qq_24078843/article/details/78560556 版权声明:本文为博主原创文章,未经博主允许不得转载. https://b ...
- centos7指定yum安装软件路径
网上的命令都是垃圾 yum -c /etc/yum.conf --installroot=/opt/all_venv/ --releasever=/ install nginx 该命令简单解释如下: ...
- 数据库部分(MySql)_1
SQL规范 以 “ ; ” 结尾:关键字之间要有空格(可以由多个空格):SQL语句中可以一个或多个换行:关键字不区分大小写. 数据库相关SQL 查询所有数库库: show databases; 创建数 ...
- MVC中子页面如何引用模板页中的jquery脚本
MVC中子页面如何引用模板页中的jquery脚本 最近在学习mvc,遇到了一个问题:在html页面中写js代码,都是引用mvc5自带的jquery脚本,虽然一拖(将指定的jquery脚本如 jquer ...
- linux部分常见指令
游走指令 cd: 进入指定位置 cd / 进入到根目录 cd /home 进入到home文件夹 cd - 进入上次所在文件夹 比如 在 / 时 cd /usr/local到loca ...
- EL表达式和JSTL的使用
一:EL表达式 1.概述:在jsp开发中,为了获取Servlet域对象中存储的数据,经常要写很多java代码,这样的做法会使JSP页面混乱,难以维护,为此,在JSP2.0规范中提供了EL表达式.它是E ...