洛谷 P2300 合并神犇 解题报告
P2300 合并神犇
题目背景
loidc来到了NOI的赛场上,他在那里看到了好多神犇。
题目描述
神犇们现在正排成一排在刷题。每个神犇都有一个能力值p[i]。loidc认为坐在附近的金牌爷能力参差不齐非常难受。于是loidc便想方设法对神犇们进行人道主义合并。
loidc想把神犇的能力值排列成从左到右单调不减。他每次可以选择一个神犇,把他合并到两侧相邻的神犇上。合并后的新神犇能力值是以前两位犇的能力值之和。每次合并完成后,被合并的两个神犇就会消失。合并后的新神犇不能再分开(万一他俩有女朋友咋办)因此每次合并后神犇的总数会减1.
loidc想知道,想治好他的强迫症需要合并多少次
输入输出格式
输入格式:
第一行一个整数 n。
第二行 n 个整数,第 i 个整数表示 p[i]。
输出格式:
loidc需要合并的次数
说明
对于 50%的数据,0< n <=5000。
对于 100%的数据,0< n <=200000,0< p[i] <=2147483647,p 均为随机生成。
暴力数据结构万岁!!!
有一个纯贪心做法,详见大佬的博客
这里我们用暴力数据结构维护。
不难想到转移方程:
令\(dp[i]\)代表前\(i\)个人合并后的最小合并次数,\(f[i]\)代表前\(i\)个人在最小合并下的末尾元素,\(sum[i]\)为前缀和数组。
值得一提的是,这里有个贪心:即\(f[i]\)在\(dp[i]\)下一定取到最小。
转移:\(dp[i]=dp[k]+i-1-k,f[k]<=sum[i]-sum[k]\)
枚举\(k\)的话是\(O(n^2)\),这里搞个暴力数据结构维护一下。
将转移条件变形,\(sum[k]+f[k]<=sum[i]\),也就是说,我们每次询问值比\(sum[i]\)小的区间所代表的转移中的最小值即可。
在线段树上维护二元组\((dp[k]+n-k,k)\),第一组为第一关键字,求最小值,第二组为第二关键字,求最大值。
为什么求最大值?一个贪心,当\(dp[k]+n-k\)相等时,\(k\)越往后取,\(f[i]\)越小(或不变)。
然而区间可能开的很大,我们得想办法优化一下空间。
参照主席树的思想进行离散,我们可以对用不上的区间先不管,询问时或者改变时再加上即可。
code:
#include <cstdio>
#define LS t[id].ls
#define RS t[id].rs
#define Mid (ql+qr>>1)
typedef long long ll;
const int N=200010;
ll a[N],s[N],f[N];
int n,dp[N],root;
//dp[i]长度为i的合法序列最小合并
//f[i]长度为i的合法序列最小合并下的末尾最小大小
struct node2
{
int c,pos;
bool friend operator <(node2 n1,node2 n2)
{
if(n1.c!=n2.c) return n1.c<n2.c;
return n1.pos>n2.pos;
}
}inf;
node2 min(node2 x,node2 y){return x<y?x:y;}
struct node
{
int ls,rs;//子树
node2 c;
}t[30000002];//维护值在l,r区间内的最小dp[k]+n-k;
int tot=0,pos[N];
int add(ll l,ll r,node2 x)
{
t[++tot].c=x;
return tot;
}
node2 query(int id,ll ql,ll qr,ll l,ll r)
{
if(!id) return inf;
if(l==ql&&r==qr)
return t[id].c;
if(r<=Mid) return query(LS,ql,Mid,l,r);
else if(l>Mid) return query(RS,Mid+1,qr,l,r);
else return min(query(LS,ql,Mid,l,Mid),query(RS,Mid+1,qr,Mid+1,r));
}
int change(int id,ll ql,ll qr,ll x,node2 del)
{
if(!id) id=add(ql,qr,del);
if(ql==qr) return id;
if(Mid>=x) LS=change(LS,ql,Mid,x,del);
else RS=change(RS,Mid+1,qr,x,del);
t[id].c=min(t[id].c,del);
return id;
}
int main()
{
scanf("%d",&n);
inf.c=0x3f3f3f3f;
inf.pos=0x3f3f3f3f;
for(int i=1;i<=n;i++)
{
scanf("%lld",a+i);
s[i]=s[i-1]+a[i];
}
node2 cc;
cc.c=n,cc.pos=0;
root=add(0,s[n],cc);
change(root,0,s[n],0,cc);
pos[n]=0;
for(int i=1;i<=n;i++)
{
node2 j=query(1,0,s[n],0,s[i]);
dp[i]=j.c-1+i-n;
f[i]=s[i]-s[j.pos];
if(s[i]+f[i]<=s[n])
{
node2 tt;
tt.c=dp[i]+n-i;
tt.pos=i;
change(root,0,s[n],s[i]+f[i],tt);
}
}
printf("%d\n",dp[n]);
return 0;
}
2018.6.8
洛谷 P2300 合并神犇 解题报告的更多相关文章
- 洛谷 P2300 合并神犇
洛谷 听说这题可以\(n^2\)水过去,不过这里介绍一种\(O(n)\)的做法. \(f[i]\)为第\(1-i\)位合并的次数. \(pre[i]\)为第\(1-i\)位最末尾的数. \(j\)为满 ...
- 洛谷P2300 合并神犇
传送门啦 分析: 刚开始读完题后感觉很懵,怎么算都不是3,结果发现题目理解错了.题目要求的是求一个不降的序列,不是递减的(发现自己好傻) 看明白题就好做了吧.经典的区间dp题,合并果子大家应该都做过, ...
- 洛谷_Cx的故事_解题报告_第四题70
1.并查集求最小生成树 Code: #include <stdio.h> #include <stdlib.h> struct node { long x,y,c; ...
- DP——P2300 合并神犇
题目背景 loidc来到了NOI的赛场上,他在那里看到了好多神犇. 题目描述 神犇们现在正排成一排在刷题.每个神犇都有一个能力值p[i].loidc认为坐在附近的金牌爷能力参差不齐非常难受.于是loi ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 洛谷 P3802 小魔女帕琪 解题报告
P3802 小魔女帕琪 题目背景 从前有一个聪明的小魔女帕琪,兴趣是狩猎吸血鬼. 帕琪能熟练使用七种属性(金.木.水.火.土.日.月)的魔法,除了能使用这么多种属性魔法外,她还能将两种以上属性组合,从 ...
- 洛谷 P2606 [ZJOI2010]排列计数 解题报告
P2606 [ZJOI2010]排列计数 题目描述 称一个\(1,2,...,N\)的排列\(P_1,P_2...,P_n\)是\(Magic\)的,当且仅当对所以的\(2<=i<=N\) ...
- 洛谷1303 A*B Problem 解题报告
洛谷1303 A*B Problem 本题地址:http://www.luogu.org/problem/show?pid=1303 题目描述 求两数的积. 输入输出格式 输入格式: 两个数 输出格式 ...
- 洛谷 P2389 电脑班的裁员 解题报告
题意: 给定一段长为N的序列,选取其中的至多M段使这些子段和最大. 当N=1000时,我们可以采用动态规划解法 令\(dp[i][j][k]\)代表当前选至位置\(i\)处于第\(j\)段当前是否选取 ...
随机推荐
- [Oracle][Standby][PDB]在PDB中修改参数,设置范围为 SPFILE,报 ORA-65099错误
[Oracle][Standby][PDB]在PDB中修改参数,设置范围为 SPFILE,报 ORA-65099错误 在Data Gaurd 的 Standby (或 CDB 是 Read Only ...
- [Spark][Hive]Hive的命令行客户端启动:
[Spark][Hive]Hive的命令行客户端启动: [training@localhost Desktop]$ chkconfig | grep hive hive-metastore 0:off ...
- AtCoder ExaWizards 2019 简要题解
AtCoder ExaWizards 2019 简要题解 Tags:题解 link:https://atcoder.jp/contests/exawizards2019 很水的一场ARC啊,随随便便就 ...
- 机器学习(三)--- scala学习笔记
Scala是一门多范式的编程语言,一种类似Java的编程语言,设计初衷是实现可伸缩的语言.并集成面向对象编程和函数式编程的各种特性. Spark是UC Berkeley AMP lab所开源的类Had ...
- .NET持续集成与自动化部署之路第二篇——使用NuGet.Server搭建公司内部的Nuget(包)管理器
使用NuGet.Server搭建公司内部的Nuget(包)管理器 前言 Nuget是一个.NET平台下的开源的项目,它是Visual Studio的扩展.在使用Visual Studio开发基 ...
- 用PHP山寨一款软件
什么是我国软件工程师引以为豪的能力?山寨.山寨,山寨! 我国程序员的山寨能力是世界一流的.这一点在世界范围内令人闻风丧胆.世界上根本就找不到一款我国工程师不能山寨的软件. 今天,锋哥教大家来山寨一款软 ...
- Unity 敌人波次设计
一.平均时间随机敌人 将所有种类敌人预制物体放在一个列表里面,每隔时间T从列表中随机选出一个生成在场景中. 二.时间加权紧迫度随机敌人 在随机情况下每种敌人出现的概率近似相等,当敌人种类较多时,有可能 ...
- ELK实时日志分析平台环境部署--完整记录
在日常运维工作中,对于系统和业务日志的处理尤为重要.今天,在这里分享一下自己部署的ELK(+Redis)-开源实时日志分析平台的记录过程(仅依据本人的实际操作为例说明,如有误述,敬请指出)~ ==== ...
- python基础学习笔记(五)
字符串基本操作 所有标准的序列操作(索引.分片.乘法.判断成员资格.求长度.取最小值和最大值)对字符串同样适用,前面已经讲述的这些操作.但是,请注意字符串都是不可变的. 字符串的方法: 字符串从str ...
- Python_初识函数和返回值_22
#len s = '金老板小护士' len(s) def my_len(): #自定义函数 i = 0 for k in s: i += 1 print(i) length = my_len() pr ...