Saddle Point ZOJ - 3955(求每个值得贡献)
题意:
给出一个矩阵,删掉一些行和列之后 求剩下矩阵的鞍点的总个数
解析:
对于每个点 我们可以求出来 它所在的行和列 有多少比它大的 设为a 有多少比它小的 设为b
然后对于那些行和列 都有两种操作 删和不删 所以一个点 就有2^a * 2^b 种成为鞍点的存在形式
求出来所有的点的情况 加起来就好了
英语限制了我的想象力
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define pd(a) printf("%d\n", a);
#define plld(a) printf("%lld\n", a);
#define pc(a) printf("%c\n", a);
#define ps(a) printf("%s\n", a);
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _ ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = , INF = 0x7fffffff, LL_INF = 0x7fffffffffffffff, MOD = 1e9 + ;
LL num[maxn][maxn], row[maxn][maxn], cal[maxn][maxn]; LL inv(LL a, LL b)
{
LL res = ;
while(b)
{
if(b & ) res = res * a % MOD;
a = a * a % MOD;
b >>= ;
}
return res;
} int main()
{
int T, n, m;
rd(T);
while(T--)
{
rd(n), rd(m);
for(int i = ; i < n; i++)
{
for(int j = ; j < m; j++)
{
rlld(num[i][j]);
row[i][j] = num[i][j];
cal[j][i] = num[i][j];
}
sort(row[i], row[i] + m);
}
for(int i = ; i < m; i++) sort(cal[i], cal[i] + n);
LL res = ;
for(int i = ; i < n; i++)
for(int j = ; j < m; j++)
{
LL tmp1 = upper_bound(row[i], row[i] + m, num[i][j]) - row[i];
LL tmp2 = lower_bound(cal[j], cal[j] + n, num[i][j]) - cal[j];
tmp1 = m - tmp1;
res = (res + (inv(, tmp1) % MOD * inv(, tmp2) % MOD) % MOD) % MOD;
}
cout << res << endl;
} return ;
}
Saddle Point ZOJ - 3955(求每个值得贡献)的更多相关文章
- Saddle Point ZOJ - 3955 题意题
Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbe ...
- Day7 - C - Saddle Point ZOJ - 3955
Chiaki has an n × m matrix A. Rows are numbered from 1 to n from top to bottom and columns are numbe ...
- ZOJ 3955:Saddle Point(思维)
http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemCode=3955 题意:给出一个n*m的矩阵,定义矩阵中的特殊点Aij当且仅当Aij是 ...
- ZOJ 3955 Saddle Point 校赛 一道计数题
ZOJ3955 题意是这样的 给定一个n*m的整数矩阵 n和m均小于1000 对这个矩阵删去任意行和列后剩余一个矩阵为M{x1,x2,,,,xm;y1,y2,,,,,yn}表示删除任意的M行N列 对于 ...
- ZOJ 3955 Saddle Point
排序. 枚举每一个格子,计算这个格子在多少矩阵中是鞍点,只要计算这一行有多少数字比他大,这一列有多少数字比他小,方案数乘一下就是这个格子对答案做出的贡献. #include<bits/stdc+ ...
- [JXOI2017]颜色 线段树求点对贡献
[JXOI2017]颜色 题目链接 https://www.luogu.org/problemnew/show/P4065 题目描述 可怜有一个长度为 n 的正整数序列 Ai,其中相同的正整数代表着相 ...
- hdu 1394 zoj 1484 求旋转序列的逆序数(并归排序)
题意:给出一序列,你可以循环移动它(就是把后面的一段移动到前面),问可以移动的并产生的最小逆序数. 求逆序可以用并归排序,复杂度为O(nlogn),但是如果每移动一次就求一次的话肯定会超时,网上题解都 ...
- ZOJ 3609 求逆元
Modular Inverse Time Limit: 2 Seconds Memory Limit: 65536 KB The modular modular multiplicative ...
- ZOJ 2588 求割边问题
题目链接:http://vjudge.net/problem/viewProblem.action?id=14877 题目大意: 要尽可能多的烧毁桥,另外还要保证图的连通性,问哪些桥是绝对不能烧毁的 ...
随机推荐
- Android6.0权限大全和权限分类
本文转载至: https://blog.csdn.net/qq_26440221/article/details/53097868 自从出了Android6.0权限管理之后,再也不能像以前那样粘贴复制 ...
- TCP/IP协议---UDP协议
UDP是一个简单的面向数据报的运输层协议:进程的每个输出操作都产生一个UDP数据报,并组装成一份待发送的IP数据报.UDP数据报是要依赖IP数据报传送的.UDP协议并不可靠,它不能保证发出去的包会被目 ...
- 如何下载google play商店里面的app?
如何不FQ的下载这国际版的app呢? 方法如下: https://androidappsapk.co/category/apps/ 你可以直接登入这个网站,下载你所需要的国际版的软件. 就像是踏入一个 ...
- SPOJ33&POJ1934 Trip LCS
题目传送门:https://www.luogu.org/problemnew/show/SP33 题目大意:给出两个字符串,求其LCS(最长公共子序列)的长度与具体方案(相同的串算作同一方案).数据组 ...
- Adobe PhotoshopCC2017 安装与破解(Mac)
简单说明下Adobe Photoshop CC 2017的破解方法: 1.打开dmg镜像,双击“Install”进行安装,登陆Adobe ID(没有注册一个)完成安装: 2.解压缩“Adobe Zii ...
- Caffe源码中caffe.proto文件分析
Caffe源码(caffe version:09868ac , date: 2015.08.15)中有一些重要文件,这里介绍下caffe.proto文件. 在src/caffe/proto目录下有一个 ...
- Flask-sqlalchemy 语法总结
Flask-sqlalchemy 语法总结 ** DDLdb.create_all() :创建实体表db.drop_all(): 删除表 1)插入表Db.session.add(user) #user ...
- [UWP 自定义控件]了解模板化控件(7):支持Command
以我的经验来说,要让TemplatedControl支持Command的需求不会很多,大部分情况用附加属性解决这个需求会更便利些,譬如UWPCommunityToolkit的HyperlinkExte ...
- Zabbix监控系统部署:源码安装
1. 概述1.1 基础环境2. 部署过程2.1 创建用户组2.2 下载源码解压编译安装2.2.1 下载源码解压2.2.2 YUM安装依赖环境2.2.3 编译安装最新版curl2.2.4 更新GNU构建 ...
- ubuntu16.04在GTX1070环境下安装 cuda9.1
设备要求 系统:Ubuntu16.04 显卡:GTX 1070 驱动:nvidia系列,显卡驱动的版本必须大于等于cuda的sh文件名里面的版本号 驱动可从 此处 下载,我已经整理好了 检查安装驱动 ...