Problem Description

Deep neural networks (DNN) have shown significant improvements in several application domains including computer vision and speech recognition. In computer vision, a particular type of DNN, known as Convolutional Neural Networks (CNN), have demonstrated state-of-the-art results in object recognition and detection.

Convolutional neural networks show reliable results on object recognition and detection that are useful in real world applications. Concurrent to the recent progress in recognition, interesting advancements have been happening in virtual reality (VR by Oculus), augmented reality (AR by HoloLens), and smart wearable devices. Putting these two pieces together, we argue that it is the right time to equip smart portable devices with the power of state-of-the-art recognition systems. However, CNN-based recognition systems need large amounts of memory and computational power. While they perform well on expensive, GPU-based machines, they are often unsuitable for smaller devices like cell phones and embedded electronics.

In order to simplify the networks, Professor Zhang tries to introduce simple, efficient, and accurate approximations to CNNs by binarizing the weights. Professor Zhang needs your help.

More specifically, you are given a weighted vector W=(w1,w2,...,wn). Professor Zhang would like to find a binary vector B=(b1,b2,...,bn) (bi∈{+1,−1}) and a scaling factor α≥0 in such a manner that ∥W−αB∥2 is minimum.
Note that ∥⋅∥ denotes the Euclidean norm (i.e. ∥X∥=√x12+⋯+xn2, where X=(x1,x2,...,xn)).
 
Input

There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:

The first line contains an integers n (1≤n≤100000) -- the length of the vector. The next line contains n integers: w1,w2,...,wn (−10000≤wi≤10000).

Output

For each test case, output the minimum value of ∥W−αB∥2 as an irreducible fraction "p/q" where p, q are integers, q>0.
 
Sample Input

3
4
1 2 3 4
4
2 2 2 2
5
5 6 2 3 4

Sample Output

5/1
0/1
10/1

题意

给你一个n维向量w,求∥W−αB∥2的最小值,其中B=(b1,b2,...,bn) (bi∈{+1,−1}),α≥0

题解

开始误以为是平均数最小,WA了几次后开始推式子

min(∥w−αb∥2)=min(∑(wi2-2αbiwi2bi2))

由于bi∈{+1,−1},易得bi*w≥0

=min(∑(wi2-2α|wi|+α2))=min(∑(α2-2α|wi|+wi2))=min(nα2-2α∑|wi|+∑wi2)

可知当α=∑|wi|/n时函数取到min

代入化简得=-(∑|wi|)2/n+∑wi2

通分=(n∑wi2-(∑|wi|)2)/n

gc=gcd(n∑wi2-(∑|wi|)2,n)

所以p=(n∑wi2-(∑|wi|)2)/gc,q=n/gc

代码

 #include<bits/stdc++.h>
using namespace std; #define ll long long
const int maxn=1e5+;
int a[maxn];
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
scanf("%d",&n);
ll sum=,ac=;
for(int i=;i<=n;i++)
{
scanf("%d",&a[i]);
sum+=abs(a[i]);
ac+=a[i]*1LL*a[i];
}
ll gc=__gcd(ac*n-sum*sum,1LL*n);
printf("%lld/%lld\n",(ac*n-sum*sum)/gc,n/gc);
}
return ;
}

HDU 5734 Acperience(数学推导)的更多相关文章

  1. HDU 5734 Acperience (推导)

    Acperience 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5734 Description Deep neural networks (DN ...

  2. HDU 5734 Acperience ( 数学公式推导、一元二次方程 )

    题目链接 题意 : 给出 n 维向量 W.要你构造一个 n 维向量 B = ( b1.b2.b3 ..... ) ( bi ∈ { +1, -1 } ) .然后求出对于一个常数 α > 0 使得 ...

  3. HDU 5734 Acperience(返虚入浑)

    p.MsoNormal { margin: 0pt; margin-bottom: .0001pt; text-align: justify; font-family: Calibri; font-s ...

  4. hdu 5734 Acperience 水题

    Acperience 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5734 Description Deep neural networks (DN ...

  5. HDU 5734 Acperience

    Acperience Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  6. hdu 5734 Acperience(2016多校第二场)

    Acperience Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total ...

  7. hdu.5211.Mutiple(数学推导 && 在logn的时间内求一个数的所有因子)

    Mutiple  Accepts: 476  Submissions: 1025  Time Limit: 4000/2000 MS (Java/Others)  Memory Limit: 6553 ...

  8. HDU 5734 Acperience (公式推导) 2016杭电多校联合第二场

    题目:传送门. #include <iostream> #include <algorithm> #include <cstdio> #include <cs ...

  9. HDU 5984 题解 数学推导 期望

    Let’s talking about something of eating a pocky. Here is a Decorer Pocky, with colorful decorative s ...

随机推荐

  1. ILBC 规范 2

    接上篇 <ILBC 规范>  https://www.cnblogs.com/KSongKing/p/10354824.html  , ILBC    的 目标 是    跨平台  跨设备 ...

  2. 写了个自动生成vcxproj的程序

    背景: 公司的vcxproj有个模板,必须要遵守 程序测试 config = { { ProjName = 'my_exe', ClCompile = {'main.cpp', 'main2.cpp' ...

  3. tomcat接口调用时延开关

    项目中有些页面时延不稳定,需要看每次接口调用时延,怎么看,有两种方法:一种是直接去catalina.out日志中看,一种是直接去localhost_access_log日志中看,第一种需要在代码中实现 ...

  4. 记一次nginx403错误

    同事开发微信小程序,小程序通过API接口调用我们的人脸比对API,但是一直是提示403,通过查看查看nginx日志,发现请求并没有转发出去,转发出去的请求,应该是301,重定向, 然后就开始在ngin ...

  5. .net updatePannel 局部刷新效果实现后,但是仍是全部刷新的修改方法

    最近做了一个小例子,就是晚上都有的那种小的updatepannel的局部刷新的小例子,但是发现按照那个例子虽然能够实现label2的局部刷新,但是看上去效果确实整个页面都在刷新,这让人很头疼,所以我在 ...

  6. 用到的linux命令

    1.修改文件权限 chmod 777 文件路径 修改文件下所有文件权限 chmond -R 777 文件路径 2.修改文件 (保存文件的方法,在命令行窗口 shift+:换出底部命令行, q表示退出, ...

  7. Cglib源码分析 invoke和invokeSuper的差别(转)

    原文 https://blog.csdn.net/makecontral/article/details/79593732 Cglib的实例 本文重在源码的分析,Cglib的使用不再复述. //被代理 ...

  8. [UE4]添加手柄

    一.在上一节的VRPawnBase中,再添加2个Motion Controller,分别命名为:LeftMotionController.RightMotionController,分别代表左右手柄. ...

  9. Power Designer 转C#实体类方法

    1.打开Power Designer菜单 Tools,选择如图    2.弹出方框中选择PD安装目录下的如图地址 3.object language选择正确目录后,可选如图语言,如C#.再填写name ...

  10. SpringCloud系列二:Restful 基础架构(搭建项目环境、创建 Dept 微服务、客户端调用微服务)

    1.概念:Restful 基础架构 2.具体内容 对于 Rest 基础架构实现处理是 SpringCloud 核心所在,其基本操作形式在 SpringBoot 之中已经有了明确的讲解,那么本次为 了清 ...