【bzoj2038】小Z的袜子
莫队算法是一种针对询问进行分块的离线算法,如果已知区间 [ l , r ] 内的答案,并且可以在较快的时间内统计出区间 [ l-1, r ],[ l , r+1 ] 的答案,即可使用莫队算法。
莫队复杂度证明如下:
假设有 \(O(\sqrt n)\) 个询问在不同块(块与块的间隔处)中,有 \(O(\sqrt n)\) 个询问在同一个块中。
- 在同一个块中的所有询问,询问结束之后 l 至多移动 \(O(\sqrt n)\) 次,而 r 至多移动 \(O(n)\) 次,一共有 \(O(\sqrt n)\) 个块,因此这部分时间复杂度为\(O(n\sqrt n)\)。
- 若 q[i] 与 q[i+1] 在不同(相邻)块中,则询问之间的 l 至多移动 \(2O(\sqrt n)\) 次,而 r 至多移动 \(O(n)\) 次,一共有 \(O(\sqrt n)\) 个这样的询问,因此这部分时间复杂度也为\(O(n\sqrt n)\)。
- 综上所述,时间复杂度为\(O(n\sqrt n)\)。
代码如下
#include <bits/stdc++.h>
using namespace std;
const int maxn=5e4+10;
struct node{int l,r,id,b;}q[maxn];
int n,m,size,cnt[maxn],a[maxn];
long long ans1[maxn],ans2[maxn];
bool cmp(const node& x,const node& y){return x.b==y.b?x.r<y.r:x.b<y.b;}
void read_and_parse(){
scanf("%d%d",&n,&m);
size=(int)sqrt(n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].b=(q[i].l-1)/size+1;
q[i].id=i;
}
sort(q+1,q+m+1,cmp);
}
long long gcd(long long x,long long y){return y?gcd(y,x%y):x;}
void solve(){
for(int i=1,lp=1,rp=0,now=0;i<=m;i++){
while(lp<q[i].l)now-=2*cnt[a[lp]]-2,--cnt[a[lp]],++lp;
while(rp>q[i].r)now-=2*cnt[a[rp]]-2,--cnt[a[rp]],--rp;
while(lp>q[i].l)--lp,now+=2*cnt[a[lp]],++cnt[a[lp]];
while(rp<q[i].r)++rp,now+=2*cnt[a[rp]],++cnt[a[rp]];
if(q[i].l^q[i].r)ans1[q[i].id]=(long long)now,ans2[q[i].id]=(long long)(q[i].r-q[i].l+1)*(q[i].r-q[i].l);
else ans1[q[i].id]=0,ans2[q[i].id]=1;
}
long long com;
for(int i=1;i<=m;i++)com=gcd(ans1[i],ans2[i]),printf("%lld/%lld\n",ans1[i]/com,ans2[i]/com);
}
int main(){
read_and_parse();
solve();
return 0;
}
【bzoj2038】小Z的袜子的更多相关文章
- BZOJ2038 小Z的袜子 (莫队算法)
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 专题练习: http://acm.hust.edu.cn/vjudge/conte ...
- BZOJ-2038 小Z的袜子(hose) 莫队算法
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MB Submit: 5573 Solved: 2568 [Subm ...
- BZOJ2038小Z的袜子(hose)
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 2343 Solved: 1077[Subm ...
- Bzoj2038 小Z的袜子(hose)
Time Limit: 20000MS Memory Limit: 265216KB 64bit IO Format: %lld & %llu Description 作为一个生活散漫 ...
- bzoj2038 小z的袜子 (莫队)
题目大意 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编 ...
- BZOJ2038 小Z的袜子 莫队
BZOJ2038 题意:q(5000)次询问,问在区间中随意取两个值,这两个值恰好相同的概率是多少?分数表示: 感觉自己复述的题意极度抽象,还是原题意有趣(逃: 思路:设在L到R这个区间中,x这个值得 ...
- [国家集训队][bzoj2038] 小Z的袜子 [莫队]
题面: 传送门 思路: 又是一道标准的莫队处理题目,但是这道题需要一点小改动:求个数变成了求概率 我们思考:每次某种颜色从i个增加到i+1个,符合要求的情况多了多少? 原来的总情况数是i*(i-1)/ ...
- 【填坑向】bzoj2038小Z的袜子 莫队
学莫队必做题,,,但是懒得写.今天来填个坑 莫队水题 莫队实际上就是按一个玄学顺序来离线计算询问,保证复杂度只会多一个n1/2,感觉是玄学(离线算法都很玄学) 易错点:要开long long(卡我半天 ...
- bzoj2038小z的袜子
用平面曼哈顿距离最小生成树或者莫队算法都可以吖QwQ~ 然而显然后者更好写(逃~) 莫队怎么写就看图吧QwQ~ 话说我一开始没开long long然后拍了3000组没拍出错交上去Wa了QAQ #inc ...
- BZOJ2038 小z的袜子
题意:给一些数,然后每次询问一段区间,问从这个区间中抽走两个数,抽到相同的数的概率 正解:莫队算法 今天新学习了莫队算法,感觉好神,离线的询问好像都可以用莫队. 要不是坑爹的HNOI2016考了两道莫 ...
随机推荐
- 【nodejs】让nodejs像后端mvc框架(asp.net mvc )一样处理请求--自动路由篇(1/8)【route】
文章目录 前情概要 在使用express框架开发的时候,每加一个请求,都在增加一条route请求规则,类似于下面的代码,很烦有木有! app.use('/myroute path', (req, re ...
- Python运算符-4
#and or not #优先级,()> not > and > or print(2 > 1 and 1 < 4) print(2 > 1 and 1 < ...
- OC与JS的交互(iOS与H5混编)
大神总结WKWebView的坑:https://mp.weixin.qq.com/s/rhYKLIbXOsUJC_n6dt9UfA 在开发过程中,经常会出现需要iOS移动端与H5混编的使用场景. iO ...
- OneZero第一次随感
>本人基础薄弱,有幸加入这个团队,甚感欣慰.这是本人第一次尝试写博客,说实话,胆怯.因为能力有限,怕技能匮乏,说不好.但是我知道既然加入这个团队,就要为团队负责.万事开头难,过程也挺难(就我个人 ...
- Spring中 @Autowired标签与 @Resource标签 的区别
http://blog.csdn.net/angus_17/article/details/7543478 http://bbs.csdn.net/topics/390175654 https://w ...
- 面象对象设计原则之五:依赖倒置原则(The Dependency Inversion Principle,DIP)
如果说开闭原则是面向对象设计的目标的话,那么依赖倒转原则就是面向对象设计的主要实现机制之一,它是系统抽象化的具体实现.依赖倒转原则是Robert C. Martin在1996年为“C++Reporte ...
- [Wiki].NET框架
.NET框架 建议将.NET Framework 3.0并入本条目或章节.(讨论) .NET框架 .NET框架的组件堆栈 开发者 Microsoft 初始版本 2002年2月13日,16年前 稳定 ...
- memcache 分布式缓存
转载地址:http://www.cnblogs.com/phpstudy2015-6/p/6713164.html 作者:那一叶随风 1.memcached分布式简介 memcached虽然称为“分布 ...
- ubuntu python apache2 wsgi django框架
在ubuntu上通过apatch2和wsgi部署django (亲手做过!!!) 一,我的python.django.apatch2版本: python:python -V 2.7.3 django: ...
- python之tkinter使用-复选框操作
# tkinter复选框操作 import tkinter as tk root = tk.Tk() root.title('问卷调查') root.geometry('220x80') # 设置窗口 ...