莫队算法是一种针对询问进行分块的离线算法,如果已知区间 [ l , r ] 内的答案,并且可以在较快的时间内统计出区间 [ l-1, r ],[ l , r+1 ] 的答案,即可使用莫队算法。

莫队复杂度证明如下:

假设有 \(O(\sqrt n)\) 个询问在不同块(块与块的间隔处)中,有 \(O(\sqrt n)\) 个询问在同一个块中。

  1. 在同一个块中的所有询问,询问结束之后 l 至多移动 \(O(\sqrt n)\) 次,而 r 至多移动 \(O(n)\) 次,一共有 \(O(\sqrt n)\) 个块,因此这部分时间复杂度为\(O(n\sqrt n)\)。
  2. 若 q[i] 与 q[i+1] 在不同(相邻)块中,则询问之间的 l 至多移动 \(2O(\sqrt n)\) 次,而 r 至多移动 \(O(n)\) 次,一共有 \(O(\sqrt n)\) 个这样的询问,因此这部分时间复杂度也为\(O(n\sqrt n)\)。
  3. 综上所述,时间复杂度为\(O(n\sqrt n)\)。

代码如下

#include <bits/stdc++.h>
using namespace std;
const int maxn=5e4+10; struct node{int l,r,id,b;}q[maxn];
int n,m,size,cnt[maxn],a[maxn];
long long ans1[maxn],ans2[maxn]; bool cmp(const node& x,const node& y){return x.b==y.b?x.r<y.r:x.b<y.b;} void read_and_parse(){
scanf("%d%d",&n,&m);
size=(int)sqrt(n);
for(int i=1;i<=n;i++)scanf("%d",&a[i]);
for(int i=1;i<=m;i++){
scanf("%d%d",&q[i].l,&q[i].r);
q[i].b=(q[i].l-1)/size+1;
q[i].id=i;
}
sort(q+1,q+m+1,cmp);
} long long gcd(long long x,long long y){return y?gcd(y,x%y):x;} void solve(){
for(int i=1,lp=1,rp=0,now=0;i<=m;i++){
while(lp<q[i].l)now-=2*cnt[a[lp]]-2,--cnt[a[lp]],++lp;
while(rp>q[i].r)now-=2*cnt[a[rp]]-2,--cnt[a[rp]],--rp;
while(lp>q[i].l)--lp,now+=2*cnt[a[lp]],++cnt[a[lp]];
while(rp<q[i].r)++rp,now+=2*cnt[a[rp]],++cnt[a[rp]];
if(q[i].l^q[i].r)ans1[q[i].id]=(long long)now,ans2[q[i].id]=(long long)(q[i].r-q[i].l+1)*(q[i].r-q[i].l);
else ans1[q[i].id]=0,ans2[q[i].id]=1;
}
long long com;
for(int i=1;i<=m;i++)com=gcd(ans1[i],ans2[i]),printf("%lld/%lld\n",ans1[i]/com,ans2[i]/com);
} int main(){
read_and_parse();
solve();
return 0;
}

【bzoj2038】小Z的袜子的更多相关文章

  1. BZOJ2038 小Z的袜子 (莫队算法)

    题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=2038 专题练习: http://acm.hust.edu.cn/vjudge/conte ...

  2. BZOJ-2038 小Z的袜子(hose) 莫队算法

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MB Submit: 5573 Solved: 2568 [Subm ...

  3. BZOJ2038小Z的袜子(hose)

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2343  Solved: 1077[Subm ...

  4. Bzoj2038 小Z的袜子(hose)

    Time Limit: 20000MS   Memory Limit: 265216KB   64bit IO Format: %lld & %llu Description 作为一个生活散漫 ...

  5. bzoj2038 小z的袜子 (莫队)

    题目大意 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编 ...

  6. BZOJ2038 小Z的袜子 莫队

    BZOJ2038 题意:q(5000)次询问,问在区间中随意取两个值,这两个值恰好相同的概率是多少?分数表示: 感觉自己复述的题意极度抽象,还是原题意有趣(逃: 思路:设在L到R这个区间中,x这个值得 ...

  7. [国家集训队][bzoj2038] 小Z的袜子 [莫队]

    题面: 传送门 思路: 又是一道标准的莫队处理题目,但是这道题需要一点小改动:求个数变成了求概率 我们思考:每次某种颜色从i个增加到i+1个,符合要求的情况多了多少? 原来的总情况数是i*(i-1)/ ...

  8. 【填坑向】bzoj2038小Z的袜子 莫队

    学莫队必做题,,,但是懒得写.今天来填个坑 莫队水题 莫队实际上就是按一个玄学顺序来离线计算询问,保证复杂度只会多一个n1/2,感觉是玄学(离线算法都很玄学) 易错点:要开long long(卡我半天 ...

  9. bzoj2038小z的袜子

    用平面曼哈顿距离最小生成树或者莫队算法都可以吖QwQ~ 然而显然后者更好写(逃~) 莫队怎么写就看图吧QwQ~ 话说我一开始没开long long然后拍了3000组没拍出错交上去Wa了QAQ #inc ...

  10. BZOJ2038 小z的袜子

    题意:给一些数,然后每次询问一段区间,问从这个区间中抽走两个数,抽到相同的数的概率 正解:莫队算法 今天新学习了莫队算法,感觉好神,离线的询问好像都可以用莫队. 要不是坑爹的HNOI2016考了两道莫 ...

随机推荐

  1. 2018年高教社杯全国大学生数学建模竞赛B题解题思路

    题目 先贴下B题的题目吧 问题B    智能RGV的动态调度策略 图1是一个智能加工系统的示意图,由8台计算机数控机床(Computer Number Controller,CNC).1辆轨道式自动引 ...

  2. 【亲测有效】无法定位链接器!请检查 tools\link.ini 中的配置是否正确的解决方案

    在进行易语言静态编译的时候,出现了如下错误: 正在进行名称连接...正在统计需要编译的子程序正在编译...正在生成主程序入口代码程序代码编译成功等待用户输入欲编译到的文件名正在进行名称连接...开始静 ...

  3. Crackme006 - 全新160个CrackMe学习系列(图文|视频|注册机源码)

    知乎:逆向驿站 原文链接 CrackMe006 | 难度适中适合练手 |160个CrackMe深度解析(图文+视频+注册机源码) crackme006,依然是delphi的,而且没壳子,条线比较清晰, ...

  4. Redis主从复制原理总结

    和Mysql主从复制的原因一样,Redis虽然读取写入的速度都特别快,但是也会产生读压力特别大的情况.为了分担读压力,Redis支持主从复制,Redis的主从结构可以采用一主多从或者级联结构,Redi ...

  5. week3个人作业

    一.必应词典的bug 必应词典占用资源过多,作为后台软件,必应词典的内存占用是其他的四五倍 适应能力弱,经常与其他软件冲突,兼容性差 二.分析 根据我的分析,团队人数6人左右,计算机大学毕业生,并有专 ...

  6. Linux内核分析 读书笔记 (第四章)

    第四章 进程调度 调度程序负责决定将哪个进程投入运行,何时运行以及运行多长时间.进程调度程序可看做在可运行态进程之间分配有限的处理器时间资源的内核子系统.只有通过调度程序的合理调度,系统资源才能最大限 ...

  7. C#JSON与XML转换

    C#JSON转XML 输入:[{\'name\': \'yancy\',\'value\': \'0\'},{\'name\': \'jieny\',\'value\': \'1\'}] string ...

  8. Linux环境C程序设计

    Linux基础 常用shell命令 命令 说明 命令 说明 man 查看联机帮助 ls 查看目录及文件列表 cp 复制目录或文件 mv 移动目录或文件 cd 改变文件或目录 rm 删除文件或目录 mk ...

  9. <构建之法>10,11,12章的读后感

    第十章:典型用户和场景 问题 :什么是典型用户? 第十一章:软件设计与实现 问题 :开发人员的标准工作流程就是不断的发现BUg,修改bug来完善功能,在此过程中要等待同伴复审,在这阶段中,开发者应该如 ...

  10. app推广及主要代码

    app推广:      一.基本情况       我们把推广和调研都放在了一起,主要是调研,主要通过调查问卷和直接访问的方式,让调查的人能够看到我们app的主要功能, 然后做出评价和对此改善的意见.调 ...