最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进行补充,但是补充的又是错的,难怪觉得有问题。反向传播法其实是神经网络的基础了,但是很多人在学的时候总是会遇到一些问题,或者看到大篇的公式觉得好像很难就退缩了,其实不难,就是一个链式求导法则反复用。如果不想看公式,可以直接把数值带进去,实际的计算一下,体会一下这个过程之后再来推导公式,这样就会觉得很容易了。

说到神经网络,大家看到这个图应该不陌生:

这是典型的三层神经网络的基本构成,Layer L1是输入层,Layer L2是隐含层,Layer L3是隐含层,我们现在手里有一堆数据{x1,x2,x3,...,xn},输出也是一堆数据{y1,y2,y3,...,yn},现在要他们在隐含层做某种变换,让你把数据灌进去后得到你期望的输出。如果你希望你的输出和原始输入一样,那么就是最常见的自编码模型(Auto-Encoder)。可能有人会问,为什么要输入输出都一样呢?有什么用啊?其实应用挺广的,在图像识别,文本分类等等都会用到,我会专门再写一篇Auto-Encoder的文章来说明,包括一些变种之类的。如果你的输出和原始输入不一样,那么就是很常见的人工神经网络了,相当于让原始数据通过一个映射来得到我们想要的输出数据,也就是我们今天要讲的话题。

本文直接举一个例子,带入数值演示反向传播法的过程,公式的推导等到下次写Auto-Encoder的时候再写,其实也很简单,感兴趣的同学可以自己推导下试试:)(注:本文假设你已经懂得基本的神经网络构成,如果完全不懂,可以参考Poll写的笔记:[Mechine Learning & Algorithm] 神经网络基础)

假设,你有这样一个网络层:

第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。

现在对他们赋上初值,如下图:

其中,输入数据 i1=0.05,i2=0.10;

     输出数据 o1=0.01,o2=0.99;

     初始权重 w1=0.15,w2=0.20,w3=0.25,w4=0.30;

          w5=0.40,w6=0.45,w7=0.50,w8=0.88

  目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。

Step 1 前向传播

1.输入层---->隐含层:

计算神经元h1的输入加权和:

神经元h1的输出o1:(此处用到激活函数为sigmoid函数):

同理,可计算出神经元h2的输出o2:

2.隐含层---->输出层:

计算输出层神经元o1和o2的值:

这样前向传播的过程就结束了,我们得到输出值为[0.75136079 , 0.772928465],与实际值[0.01 , 0.99]相差还很远,现在我们对误差进行反向传播,更新权值,重新计算输出。

Step 2 反向传播

1.计算总误差

总误差:(square error)

但是有两个输出,所以分别计算o1和o2的误差,总误差为两者之和:



2.隐含层---->输出层的权值更新:

以权重参数w5为例,如果我们想知道w5对整体误差产生了多少影响,可以用整体误差对w5求偏导求出:(链式法则)

下面的图可以更直观的看清楚误差是怎样反向传播的:

现在我们来分别计算每个式子的值:

计算

未完待续……

From: http://www.cnblogs.com/charlotte77/p/5629865.html

一文弄懂神经网络中的反向传播法(Backpropagation algorithm)的更多相关文章

  1. 一文弄懂神经网络中的反向传播法——BackPropagation【转】

    本文转载自:https://www.cnblogs.com/charlotte77/p/5629865.html 一文弄懂神经网络中的反向传播法——BackPropagation   最近在看深度学习 ...

  2. 一文弄懂神经网络中的反向传播法——BackPropagation

    最近在看深度学习的东西,一开始看的吴恩达的UFLDL教程,有中文版就直接看了,后来发现有些地方总是不是很明确,又去看英文版,然后又找了些资料看,才发现,中文版的译者在翻译的时候会对省略的公式推导过程进 ...

  3. [转] 一文弄懂神经网络中的反向传播法——BackPropagation

    在看CNN和RNN的相关算法TF实现,总感觉有些细枝末节理解不到位,浮在表面.那么就一点点扣细节吧. 这个作者讲方向传播也是没谁了,666- 原文地址:https://www.cnblogs.com/ ...

  4. 神经网络中的反向传播法--bp【转载】

    from: 作者:Charlotte77 出处:http://www.cnblogs.com/charlotte77/ 一文弄懂神经网络中的反向传播法——BackPropagation 最近在看深度学 ...

  5. 反向传播算法 Backpropagation Algorithm

    假设我们有一个固定样本集,它包含 个样例.我们可以用批量梯度下降法来求解神经网络.具体来讲,对于单个样例(x,y),其代价函数为:这是一个(二分之一的)方差代价函数.给定一个包含 个样例的数据集,我们 ...

  6. 【TensorFlow】一文弄懂CNN中的padding参数

    在深度学习的图像识别领域中,我们经常使用卷积神经网络CNN来对图像进行特征提取,当我们使用TensorFlow搭建自己的CNN时,一般会使用TensorFlow中的卷积函数和池化函数来对图像进行卷积和 ...

  7. 一文读懂神经网络训练中的Batch Size,Epoch,Iteration

    一文读懂神经网络训练中的Batch Size,Epoch,Iteration 作为在各种神经网络训练时都无法避免的几个名词,本文将全面解析他们的含义和关系. 1. Batch Size 释义:批大小, ...

  8. 彻底弄懂AngularJS中的transclusion

    点击查看AngularJS系列目录 彻底弄懂AngularJS中的transclusion AngularJS中指令的重要性是不言而喻的,指令让我们可以创建自己的HTML标记,它将自定义元素变成了一个 ...

  9. 一文弄懂-Netty核心功能及线程模型

    目录 一. Netty是什么? 二. Netty 的使用场景 三. Netty通讯示例 1. Netty的maven依赖 2. 服务端代码 3. 客户端代码 四. Netty线程模型 五. Netty ...

随机推荐

  1. git常用命令2--- git rebase

    git rebase:简单而言就是把某个分支上的提交commit嫁接到另一个commit的后面,在这个过程中这些commit的base相对就改变了,也就叫变基. git rebase <upst ...

  2. JS Function类型

    每个函数都是Function类型的实例,由于函数是对象,函数名实际上是一个指向函数对象的指针,不会与某个函数绑定. 1.函数的声明: (1)函数声明语法: function sum (num1,num ...

  3. java第二周的作业

    package java第二周学习; import javax.swing.JOptionPane; public class 数学题 { private int a; private int b; ...

  4. opencv+python 自动绿帽机

    具体内容,直接看注释吧,该注释的我都注释掉了. # coding:utf-8 import cv2 # 待检测的图片路径 imagepath = r'D://greenhat//2.jpg' # 获取 ...

  5. JAVA自学笔记07

    JAVA自学笔记07 1.构造方法 1) 例如:Student s = new Student();//构造方法 System.out.println(s);// Student@e5bbd6 2)功 ...

  6. .NET分布式缓存Memcached从入门到实战

    一.课程介绍 在数据驱动的web开发中,经常要重复从数据库中取出相同的数据,这种重复极大的增加了数据库负载.缓存是解决这个问题的好办法.但是ASP.NET中的虽然已经可以实现对页面局部进行缓存,但还是 ...

  7. javaScript系列 [01]-javaScript函数基础

    [01]-javaScript函数基础 1.1 函数的创建和结构 函数的定义:函数是JavaScript的基础模块单元,包含一组语句,用于代码复用.信息隐蔽和组合调用. 函数的创建:在javaScri ...

  8. Spring中Mybatis的花样配置 及 原理

    摘自: https://www.jianshu.com/p/fc23c94fc439

  9. android ScrollView 控制行数

    利用ScrollView 来控制textView 显示的行数 <ScrollView android:layout_width="fill_parent" android:l ...

  10. [Python设计模式] 第12章 基金理财更省事——外观模式

    github地址:https://github.com/cheesezh/python_design_patterns 题目1 用程序模拟股民直接炒股的代码,比如股民投资了股票1,股票2,股票3,国债 ...