[深度学习]CNN--卷积神经网络中用1*1 卷积有什么作用
1*1卷积过滤器 和正常的过滤器一样,唯一不同的是它的大小是1*1,没有考虑在前一层局部信息之间的关系。最早出现在 Network In Network的论文中 ,使用1*1卷积是想加深加宽网络结构 ,在Inception网络( Going Deeper with Convolutions )中用来降维.
由于3*3卷积或者5*5卷积在几百个filter的卷积层上做卷积操作时相当耗时,所以1*1卷积在3*3卷积或者5*5卷积计算之前先降低维度。
那么,1*1卷积的主要作用有以下几点:
1、降维( dimension reductionality )
某次卷积之后的结果是W*H*100的特征,现在需要用1*1的卷积核将其降维成W*H*10,即100个通道变成10个通道:
通过一次卷积操作,W*H*100将变为W*H*1,这样的话,使用10个1*1的卷积核,显然可以卷积出10个W*H*1,再做通道的串接操作,就实现了W*H*5。
2. 升维
比如某次卷积之后的结果是W*H*6的特征,现在需要用1*1的卷积核将其降维成W*H*7,即6个通道变成7个通道:
通过一次卷积操作,W*H*6将变成W*H*1,这样的话,使用7个1*1的卷积核,显然可以卷积出7个W*H*1,再做铜套串接操作,就实现了W*H*7。
3、加入非线性。卷积层之后经过激励层,1*1的卷积在前一层的学习表示上添加了非线性激励( non-linear activation ),提升网络的表达能力;
[深度学习]CNN--卷积神经网络中用1*1 卷积有什么作用的更多相关文章
- 深度学习之循环神经网络RNN概述,双向LSTM实现字符识别
深度学习之循环神经网络RNN概述,双向LSTM实现字符识别 2. RNN概述 Recurrent Neural Network - 循环神经网络,最早出现在20世纪80年代,主要是用于时序数据的预测和 ...
- 【深度学习系列】手写数字识别卷积神经--卷积神经网络CNN原理详解(一)
上篇文章我们给出了用paddlepaddle来做手写数字识别的示例,并对网络结构进行到了调整,提高了识别的精度.有的同学表示不是很理解原理,为什么传统的机器学习算法,简单的神经网络(如多层感知机)都可 ...
- 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(CNN)(上)
作者:szx_spark 1. Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十 ...
- 吴恩达深度学习笔记(deeplearning.ai)之卷积神经网络(一)
Padding 在卷积操作中,过滤器(又称核)的大小通常为奇数,如3x3,5x5.这样的好处有两点: 在特征图(二维卷积)中就会存在一个中心像素点.有一个中心像素点会十分方便,便于指出过滤器的位置. ...
- 深度学习之 TensorFlow(四):卷积神经网络
基础概念: 卷积神经网络(CNN):属于人工神经网络的一种,它的权值共享的网络结构显著降低了模型的复杂度,减少了权值的数量.卷积神经网络不像传统的识别算法一样,需要对数据进行特征提取和数据重建,可以直 ...
- 【深度学习篇】--神经网络中的池化层和CNN架构模型
一.前述 本文讲述池化层和经典神经网络中的架构模型. 二.池化Pooling 1.目标 降采样subsample,shrink(浓缩),减少计算负荷,减少内存使用,参数数量减少(也可防止过拟合)减少输 ...
- 深度学习、图像识别入门,从VGG16卷积神经网络开始
刚开始接触深度学习.卷积神经网络的时候非常懵逼,不知道从何入手,我觉得应该有一个进阶的过程,也就是说,理应有一些基本概念作为奠基石,让你有底气去完全理解一个庞大的卷积神经网络: 本文思路: 一.我认为 ...
- 深度学习原理与框架-猫狗图像识别-卷积神经网络(代码) 1.cv2.resize(图片压缩) 2..get_shape()[1:4].num_elements(获得最后三维度之和) 3.saver.save(训练参数的保存) 4.tf.train.import_meta_graph(加载模型结构) 5.saver.restore(训练参数载入)
1.cv2.resize(image, (image_size, image_size), 0, 0, cv2.INTER_LINEAR) 参数说明:image表示输入图片,image_size表示变 ...
- 深度学习-CNN+RNN笔记
以下叙述只是简单的叙述,CNN+RNN(LSTM,GRU)的应用相关文章还很多,而且研究的方向不仅仅是下文提到的1. CNN 特征提取,用于RNN语句生成图片标注.2. RNN特征提取用于CNN内容分 ...
随机推荐
- 【ZooKeeper】ZooKeeper安装及简单操作
ZooKeeper介绍 ZooKeeper是一个分布式的,开放源码的分布式应用程序协调服务,是Google的Chubby一个开源的实现,是Hadoop和Hbase的重要组件.它是一个为分布式应用提供一 ...
- idea配置servlet记录,tmocat当服务器,学习
没整理图片,将就看吧, Mac10.11.6 idea2018.1.3 servlet+tmocat9 遇到问题: 端口错误 java.rmi.server.ExportException: Port ...
- VMware虚拟机网络设置
背景介绍 在用 VMware workstation 安装好虚拟机后,需要给虚拟机配置网络,配置网络的方法有桥接.NAT. 采用桥接的方法需要占据物理机网段的ip地址,可能会与物理机同一网段的其 ...
- xpath和lxml类库
1. xpath和lxml lxml是一款高性能的 Python HTML/XML 解析器,我们可以利用XPath,来快速的定位特定元素以及获取节点信息 2. 什么是xpath XPath (XML ...
- OpenCV2.4.10 + VS2010开发环境配置
原文转载自:qinyang8513 一.开发环境 1.操作系统:Windows 7(64位) 2.编程环境:Microsoft Visual Studio 2010 3.OpenCV版本:2.4.10 ...
- Linux(以RHEL7为例)下添加工作区的方法|| The Way To Add Workspace On Linux
Linux(以RHEL7为例)下添加工作区的方法 The Way To Add Workspace On Linux 作者:钟凤山(子敬叔叔) 编写时间:2017年5月11日星期四 需求:有时候在使用 ...
- MySQL与SQL语句的操作
MySQL与SQL语句的操作 Mysql比较轻量化,企业用的是Oracle,基本的是熟悉对数据库,数据表,字段,记录的更新与修改 1. mysql基本信息 特殊数据库:information_sche ...
- ReactNative学习笔记(三)打包、调试、运行等相关介绍
各种命令 个人习惯在项目根目录下把一些常见命令写成bat文件,以后每次要执行什么只需要双击即可: 编译.生成.运行并启动packager(debug模式): react-native run-andr ...
- Behavior Tree 用 Lua 实现一个最简行为树
local function Traverse(node, ...) local t = node.type if t == SELECTOR then , #node do if Traverse( ...
- Sequelize 学习笔记(11)- Migrations 迁移
一.作用 类似 git 管理源代码 一样,维护你的 DB. 二.安装 npm install --save sequelize-cli 三.使用 1.构建项目时 node_modules/.bin/s ...