BZOJ.1566.[NOI2009]管道取珠(DP 思路)
考虑\(a_i^2\)有什么意义:两个人分别操作原序列,使得得到的输出序列都为\(i\)的方案数。\(\sum a_i^2\)就是两人得到的输出序列相同的方案数。
\(f[i][j][k]\)表示第一个人上管道取到了第\(i\)个球,下管道取到了第\(j\)个球,第二个人上管道取到了第\(k\)个球,的方案数。转移很简单。
复杂度\(O(n^3)\)。
//2816kb 1072ms
#include <cstdio>
#include <algorithm>
#define mod 1024523
#define Mod(x) x>=mod&&(x-=mod)
#define Add(x,v) (x+=v)>=mod&&(x-=mod)
typedef long long LL;
const int N=505;
int main()
{
static int f[2][N][N];
static char A[N],B[N];
int n,m; scanf("%d%d",&n,&m);
scanf("%s%s",A+1,B+1);
std::reverse(A+1,A+1+n), std::reverse(B+1,B+1+m);
A[n+1]='?', B[m+1]='!';
int p=0; f[p][0][0]=1;
for(int i=0; i<=n; ++i,p^=1)
for(int j=0; j<=m; ++j)
for(int k=0,v; k<=n; ++k)
if((v=f[p][j][k]))
{
if(A[i+1]==A[k+1]) Add(f[p^1][j][k+1],v);
if(A[i+1]==B[i+j-k+1]) Add(f[p^1][j][k],v);
if(B[j+1]==A[k+1]) Add(f[p][j+1][k+1],v);//p不变啊(日常制杖)
if(B[j+1]==B[i+j-k+1]) Add(f[p][j+1][k],v);
if(i+j==n+m) return printf("%d\n",f[p][m][n]),0;
f[p][j][k]=0;
}
puts("Miaomiaomiao?");
return 0;
}
BZOJ.1566.[NOI2009]管道取珠(DP 思路)的更多相关文章
- Bzoj 1566: [NOI2009]管道取珠(DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MB Submit: 1558 Solved: 890 [Submit][Status ...
- bzoj 1566: [NOI2009]管道取珠【dp】
想不出来想不出来 仔细考虑平方的含义,我们可以把它想成两个人同时操作,最后得到相同序列的情况 然后就比较简单了,设f[t][i][j]为放了t个珠子,A的上方管道到了第i颗珠子,B的上方管道到了第j颗 ...
- bzoj 1566: [NOI2009]管道取珠
Description Input 第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. ...
- 【BZOJ 1566】 1566: [NOI2009]管道取珠 (DP)
1566: [NOI2009]管道取珠 Time Limit: 20 Sec Memory Limit: 650 MBSubmit: 1659 Solved: 971 Description In ...
- 1566: [NOI2009]管道取珠 - BZOJ
Description Input第一行包含两个整数n, m,分别表示上下两个管道中球的数目. 第二行为一个AB字符串,长度为n,表示上管道中从左到右球的类型.其中A表示浅色球,B表示深色球. 第三行 ...
- 【BZOJ】1566: [NOI2009]管道取珠
题解 假如我们非常熟练的看出来,平方和转有序对统计的套路的话,应该就不难了 我们只需要统计(wayA,wayB)生成的序列一样的有序对个数就行 可以用一个\(n^3\)的dp解决 \(dp[i][j] ...
- bzoj1566: [NOI2009]管道取珠 DP
题目链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1566 思路 n个球,第i个球颜色为ai,对于颜色j,对答案的贡献为颜色为j的球的个数的平 ...
- [NOI2009]管道取珠 DP + 递推
---题面--- 思路: 主要难点在思路的转化, 不能看见要求$\sum{a[i]^2}$就想着求a[i], 我们可以对其进行某种意义上的拆分,即a[i]实际上可以代表什么? 假设我们现在有两种取出某 ...
- bzoj1566 [NOI2009]管道取珠——DP
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1566 一眼看上去很懵... 但是答案可以转化成有两个人在同时取珠子,他们取出来一样的方案数: ...
随机推荐
- poj3254 炮兵阵地弱化版,记数类dp
/* dp[i][j]表示到第i行的状态j有多少放置方式 */ #include<iostream> #include<cstring> #include<cstdio& ...
- C++ Primer 笔记——异常处理
1.栈展开过程沿着嵌套函数的调用链不断查找,直到找到了与异常匹配的catch句子为止,或者也可能一直没找到匹配的catch,则程序将调用terminate,退出主函数后查找过程终止.假设找到了一个ca ...
- linux:安装并使用mongo
1.下载mongo: curl -O https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-3.0.6.tgz 2.解压: tar -zxvf ...
- install memcached for ubuntu
Memcached安装 1.先下载安装libevent 安装 libevent# tar zxvf libevent-1.4.9-stable.tar.gz# cd libevent-1.4.9-st ...
- Caffe使用新版本CUDA和CuDNN
因为一些原因还是需要使用别人基于Caffe的代码,但是代码比较老,默认不支持高版本的cuda或者cudnn 怎么办呢?基本上就是把最新官方Caffe-BVLC的几个关键文件拿过来替换即可. 脚本如下: ...
- 一条bash命令,清除指定的网络接口列表
在K8S的安装配置过程, 由于不断的测试, 会不断的生成各式各样的虚拟网络接口. 那么,不重新安装之前,清除前次产生的这些垃圾接口, 不让它们影响下次的测试,是很有必要的. 如何快速删除呢? 如下命令 ...
- Tomcat8 启动慢 Creation of SecureRandom instance for session ID generation using [SHA1PRNG] took [53,161] milliseconds
修改$JAVA_PATH/jre/lib/security/java.security文件 将 securerandom.source=file:/dev/random 修改为 securerando ...
- [转] node.js下mongoose简单操作实例
Mongoose API : http://mongoosejs.com/docs/api.html // mongoose 链接 var mongoose = require('mongoose') ...
- MySQL应用异常问题解决
MySQL错误:Every derived table must have its own alias 派生表都必须有自己的别名 一般在多表查询时,会出现此错误. 因为,进行嵌套查询的时候子查询出来的 ...
- 选择结构switch
1.选择结构switch switch 条件语句也是一种很常用的选择语句,它和if条件语句不同,它只能针对某个表达式的值作出判断,从而决定程序执行哪一段代码.例如,在程序中使用数字1~7来表示星期一到 ...