一道好冷门的好题啊,算是对于一个小结论数据结构的一点考验吧

首先看完题目我们发现要从这个神秘数的性质入手,我们观察or手玩可得:

  1. 如果有\(x\)个\(1\),那么\([1,x]\)都是可以表示出来的
  2. 如果我此时加入的数\(y>x\),那么这个数无法被表示,因此便为答案
  3. 如果我此时加入的数\(y\le x\),那么这个数可以被表示,并且可以表示的区间变成了\([1,x+y]\)

重复以上过程,肯定可以得出答案

但这样对于每一次询问都要进行一次排序,时间复杂度为\(O(nm\ logn)\),肯定跑不过去的。我们换一种想法,假设我此时已经表示出了\([1,x]\),那么我统计一下在区间\([l,r]\)中所有小于等于\(x+1\)的数的和\(s\)

若\(s\ge x+1\),说明此时必定还存在更大的组合方案,于是可以表示的区间变为\([1,s]\)

再考虑上述的核心过程:统计一段区间内小于等于某个数的数的和

直接主席树即可,把值域线段树的点权改为数的和即可,查询的时候还是分左右子树查找

由于查询之后每次的答案扩大至少一倍,因此总复杂度\(O(m\ log^2n)\)

CODE

#include<cstdio>
#include<cctype>
#include<algorithm>
using namespace std;
const int N=100005;
struct President_tree
{
int ch[2],sum;
}node[N*20];
int n,m,q,rt[N],a[N],b[N],tot,l,r;
inline char tc(void)
{
static char fl[100000],*A=fl,*B=fl;
return A==B&&(B=(A=fl)+fread(fl,1,100000,stdin),A==B)?EOF:*A++;
}
inline void read(int &x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+ch-'0',isdigit(ch=tc()));
}
inline void write(int x)
{
if (x>9) write(x/10);
putchar(x%10+'0');
}
inline int find(int x)
{
int l=1,r=m,mid,res;
while (l<=r)
{
mid=l+r>>1;
if (b[mid]<=x) res=mid,l=mid+1; else r=mid-1;
}
return res;
}
inline void build(int &now,int l,int r)
{
if (!now) now=++tot; if (l==r) return; int mid=l+r>>1;
build(node[now].ch[0],l,mid); build(node[now].ch[1],mid+1,r);
}
inline int insert(int lst,int l,int r,int id,int x)
{
int now=++tot; node[now]=node[lst]; node[now].sum+=x;
if (l==r) return now; int mid=l+r>>1;
if (id<=mid) node[now].ch[0]=insert(node[lst].ch[0],l,mid,id,x);
else node[now].ch[1]=insert(node[lst].ch[1],mid+1,r,id,x); return now;
}
inline int query(int lst,int now,int l,int r,int beg,int end)
{
int mid=l+r>>1,res=0;
if (l>=beg&&r<=end) return node[now].sum-node[lst].sum;
if (beg<=mid) res+=query(node[lst].ch[0],node[now].ch[0],l,mid,beg,end);
if (end>mid) res+=query(node[lst].ch[1],node[now].ch[1],mid+1,r,beg,end);
return res;
}
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
register int i; read(n);
for (i=1;i<=n;++i)
read(a[i]),b[i]=a[i]; read(q);
sort(b+1,b+n+1); m=unique(b+1,b+n+1)-b-1; build(rt[0],1,m);
for (i=1;i<=n;++i)
{
int x=find(a[i]);
rt[i]=insert(rt[i-1],1,m,x,a[i]);
}
for (i=1;i<=q;++i)
{
read(l); read(r); int ans=1;
for (;;)
{
int x=find(ans),s=query(rt[l-1],rt[r],1,m,1,x);
if (s>=ans) ans=s+1; else break;
}
write(ans); putchar('\n');
}
return 0;
}

Luogu P4587 [FJOI2016]神秘数的更多相关文章

  1. LUOGU P4587 [FJOI2016]神秘数(主席树)

    传送门 解题思路 如果区间内没有\(1\),那么答案就为\(1\),从这一点继续归纳.如果区间内有\(x\)个\(1\),设区间内\([2,x+1]\)的和为\(sum\),如果\(sum=0\),那 ...

  2. 洛谷 P4587 [FJOI2016]神秘数

    大鸽子 llmmkk 正在补8.3号咕掉的题 时隔两个月,再看到这道题,我又是一脸懵,这种思维的培养太重要了 链接: P4587 题意: 给出 \(n\) 个点的序列,\(m\) 次询问区间神秘数. ...

  3. 洛谷P4587 [FJOI2016]神秘数(主席树)

    题面 洛谷 题解 考虑暴力,对于询问中的一段区间\([l,r]\),我们先将其中的数升序排序,假设当前可以表示出\([1,k]\)目前处理\(a_i\),假如\(a_i>k+1\),则答案就是\ ...

  4. P4587 [FJOI2016]神秘数(主席树)

    题意:给出1e5个数 查询l,r区间内第一个不能被表示的数 比如1,2,4可以用子集的和表示出[1,7] 所以第一个不能被表示的是8 题解:先考虑暴力的做法 把这个区间内的数字按从小到大排序后 从前往 ...

  5. 220722 T4 求和 /P4587 [FJOI2016]神秘数 (主席树)

    好久没打主席树了,都忘了怎么用了...... 假设我们选了一些数能构成[0,x]范围内的所有值,下一个要加的数是k(k<=x+1),那么可以取到[0,x+k]内的所有取值,所以有一种做法: 对于 ...

  6. (bzoj4408)[FJOI2016]神秘数(可持久化线段树)

    (bzoj4408)[FJOI2016]神秘数(可持久化线段树) bzoj luogu 对于一个区间的数,排序之后从左到右每一个数扫 如果扫到某个数a时已经证明了前面的数能表示[1,x],那么分情况: ...

  7. 【BZOJ4408】[FJOI2016]神秘数(主席树)

    [BZOJ4408][FJOI2016]神秘数(主席树) 题面 BZOJ 洛谷 题解 考虑只有一次询问. 我们把所有数排个序,假设当前可以表示出的最大数是\(x\). 起始\(x=0\). 依次考虑接 ...

  8. 【LG4587】[FJOI2016]神秘数

    [LG4587][FJOI2016]神秘数 题面 洛谷 题解 首先我们想一想暴力怎么做 对于一段区间\([l,r]\) 我们先将它之间的数升序排序 从左往右扫, 设当前我们可以表示出的数为\([1,x ...

  9. BZOJ4299 & CC FRBSUM:ForbiddenSum & BZOJ4408 & 洛谷4587 & LOJ2174:[FJOI2016]神秘数——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=4299 https://www.lydsy.com/JudgeOnline/problem.php? ...

随机推荐

  1. loadrunner 脚本开发-url解码

    url解码 by:授客 QQ:1033553122 脚本结构如下: Action.c中的代码如下: int htoi(char *s) { int value = 0; int c = 0; c = ...

  2. Android 时间与日期操作类

    获取本地日期与时间 public String getCalendar() { @SuppressLint("SimpleDateFormat") SimpleDateFormat ...

  3. [20180604]在内存修改数据(bbed).txt

    [20180604]在内存修改数据(bbed).txt --//以前曾经做过在内存修改数据,通过oradebug poke命令修改内存信息,相关链接:--//http://blog.itpub.net ...

  4. [20170628]完善ooerr脚本.txt

    [20170628]完善ooerr脚本.txt --//注意不是oracle的oerr,是我写的一个小脚本,下面会提到.很简单.^_^.--//参考链接:blog.itpub.net/267265/v ...

  5. MySQL 8.0 —— 数据字典

    1.简介 MySQL 8.0 将数据库元信息都存放于InnoDB存储引擎表中,在之前版本的MySQL中,数据字典不仅仅存放于特定的存储引擎表中,还存放于元数据文件.非事务性存储引擎表中.本文将会介绍M ...

  6. Fedora 28 打印机配置 ( HP pro 1136M ,基于Windows 打印服务器使用 smb 协议)

    Fedora 28 本身是没有打印服务的.我们需要安装下列软件: System-Config-Printer Common Unix Printing System - CUPS hplip.x86_ ...

  7. Windows服务器搭建Redis

    1.下载安装Redis https://github.com/MicrosoftArchive/redis/releases 可以下载安装版(.msi)也可以下载解压版(.zip). 我直接下载的安装 ...

  8. log4.net 配置 - 自定义过滤器按LoggerName过滤日志

    自定义过滤器按LoggerName过滤日志,本来想使用 PropertyFilter 来实现,后来研究发现一直不能成功,源代码debug了一下获取一直为null,时间关系只好用 StringMatch ...

  9. 基础数据类型之AbstractStringBuilder

    String内部是一个private final char value[]; 也就意味着每次调用的各种处理方法,返回的字符串都是一个新的,性能上,显然.... 所以,对于可变字符序列的需求是很明确的 ...

  10. File类_构造函数

    File类:用来将文件或者文件夹封装成对象方便对文件或或文件夹的属性信息进行操作File对象可以作为参数传递给流的构造函数 import java.io.File; public class File ...