ACM-ICPC 2018 沈阳赛区网络预赛 J. Ka Chang(树状数组+分块)
Given a rooted tree ( the root is node 1 ) of N nodes. Initially, each node has zero point.
Then, you need to handle Q operations. There're two types:
1 L X: Increase points by X of all nodes whose depth equals L ( the depth of the root is zero ). (x≤108)
2 X: Output sum of all points in the subtree whose root is X.
Input
Just one case.
The first lines contain two integer, N,Q(N≤105,Q≤105).
The next n−1 lines: Each line has two integer aaa,bbb, means that node aaa is the father of node b. It's guaranteed that the input data forms a rooted tree and node 1 is the root of it.
The next Q lines are queries.
Output
For each query 2, you should output a number means answer.
样例输入
3 3
1 2
2 3
1 1 1
2 1
2 3
样例输出
1
0
题意
给你一颗以1为根节点的数,有两个操作
1.层数为L的节点增加X
2.查询以X为根节点的子树总权和
题解
操作2很容易想到dfs维护树状数组
对于操作1,可以把层数按sqrt(n)分块,对于层数点数<=block的直接暴力更新,对于>block先保存进数组ans,查询的时候二分左右区间可以知道根的节点数,再乘ans,这样可以把单次操作的复杂度固定在sqrt(n)范围内
代码
#include<bits/stdc++.h>
using namespace std; #define LL long long const int maxn=1e5+;
int s[maxn],e[maxn],tot,n;
LL sum[maxn],ans[maxn];
vector<int>G[maxn],deep[maxn],q;
void dfs(int u,int fa,int d)
{
s[u]=++tot;
deep[d].push_back(s[u]);
for(auto v:G[u])
{
if(v==fa)continue;
dfs(v,u,d+);
}
e[u]=tot;
}
int lowbit(int x)
{
return x&(-x);
}
void update(int x,int add)
{
for(int i=x;i<=n;i+=lowbit(i))
sum[i]+=add;
}
LL query(int x)
{
LL ans=;
for(int i=x;i>;i-=lowbit(i))
ans+=sum[i];
return ans;
}
int main()
{
int Q,op,L,x,u,v;
scanf("%d%d",&n,&Q);
int block=sqrt(n);
for(int i=;i<n;i++)
{
scanf("%d%d",&u,&v);
G[u].push_back(v);
G[v].push_back(u);
}
dfs(,-,);
for(int i=;i<n;i++)
if(deep[i].size()>block)q.push_back(i);
for(int i=;i<Q;i++)
{
scanf("%d",&op);
if(op==)
{
scanf("%d%d",&L,&x);
if(deep[L].size()>block)ans[L]+=x;
else
{
for(auto X:deep[L])
update(X,x);
}
}
else
{
scanf("%d",&x);
LL res=query(e[x])-query(s[x]-);
for(auto pos:q)
res+=ans[pos]*(upper_bound(deep[pos].begin(),deep[pos].end(),e[x])-lower_bound(deep[pos].begin(),deep[pos].end(),s[x]));
printf("%lld\n",res);
}
}
return ;
}
ACM-ICPC 2018 沈阳赛区网络预赛 J. Ka Chang(树状数组+分块)的更多相关文章
- ACM-ICPC 2018 沈阳赛区网络预赛 J. Ka Chang (树分块)
题意:一个树,支持两种操作:1.将深度为L的节点权置加上X;2.求以x为根节点的子树上节点权置之和.根节点深度为0. 分析:考虑用树状数组维护节点权置,按dfs序下标查询.记录每个深度节点的个数.如果 ...
- ACM-ICPC 2018 沈阳赛区网络预赛 J. Ka Chang (分块思想)
题目链接:https://nanti.jisuanke.com/t/31451 题意: 给你一颗树,树上各点有初始权值,你有两种操作: 1. 给树中深度为l的点全部+x,(根节点为1,深度为0) 2. ...
- ACM-ICPC 2018 沈阳赛区网络预赛 J Ka Chang
Ka Chang 思路: dfs序+树状数组+分块 先dfs处理好每个节点的时间戳 对于每一层,如果这一层的节点数小于sqrt(n),那么直接按照时间戳在树状数组上更新 如果这一层节点个数大于sqrt ...
- ACM-ICPC 2018 沈阳赛区网络预赛 J. Ka Chang(树上分块+dfs序+线段树)
题意 链接:https://nanti.jisuanke.com/t/A1998 给出一个有根树(根是1),有n个结点.初始的时候每个结点的值都是0.下面有q个操作,操作有两种,操作1.将深度为L(根 ...
- ACM-ICPC 2018 徐州赛区网络预赛 G. Trace【树状数组维护区间最大值】
任意门:https://nanti.jisuanke.com/t/31459 There's a beach in the first quadrant. And from time to time, ...
- ACM-ICPC 2018 沈阳赛区网络预赛 J树分块
J. Ka Chang Given a rooted tree ( the root is node 11 ) of NN nodes. Initially, each node has zero p ...
- ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer (最大生成树+LCA求节点距离)
ACM-ICPC 2018 徐州赛区网络预赛 J. Maze Designer J. Maze Designer After the long vacation, the maze designer ...
- ACM-ICPC 2018 沈阳赛区网络预赛 K Supreme Number(规律)
https://nanti.jisuanke.com/t/31452 题意 给出一个n (2 ≤ N ≤ 10100 ),找到最接近且小于n的一个数,这个数需要满足每位上的数字构成的集合的每个非空子集 ...
- ACM-ICPC 2018 沈阳赛区网络预赛-K:Supreme Number
Supreme Number A prime number (or a prime) is a natural number greater than 11 that cannot be formed ...
随机推荐
- 机器学习进阶-疲劳检测(眨眼检测) 1.dist.eculidean(计算两个点的欧式距离) 2.dlib.get_frontal_face_detector(脸部位置检测器) 3.dlib.shape_predictor(脸部特征位置检测器) 4.Orderdict(构造有序的字典)
1.dist.eculidean(A, B) # 求出A和B点的欧式距离 参数说明:A,B表示位置信息 2.dlib.get_frontal_face_detector()表示脸部位置检测器 3.dl ...
- EF 配置MySQL
添加 mysql dll 引用 WebConfig 配置: 1.先添加connectionstrings,providerName 换成 mysql的 <connectionStrings> ...
- Dictionary转为Model实例
Dictionary<string, object> dic = new Dictionary<string, object>(); dic.Add(); dic.Add(&q ...
- git 每次push都需要输入用户和密码
git remote -v origin https://github.com/userName/xx.git (fetch) origin https://github.com/userName/x ...
- JDBC有哪些接口
1 实现Driver接口的对象是JDBC进行数据库访问的开始,可以通过java.lang.Class类的forName(),动态加载驱动程序. Class.forName("驱动程序&quo ...
- 1.网站js文件获取
++++++++++++++++++++++ pls,input your domain like: http://111.com #coding:utf8 #encoding=utf8 import ...
- linux键盘驱动
http://blog.csdn.net/beyondhaven/article/details/5753182 http://blog.chinaunix.net/uid-20564848-id-7 ...
- package.json---入门说明
直接的说:就是管理你本地安装的npm包 一个package.json文件可以做如下事情: 展示项目所依赖的npm包 允许你指定一个包的版本[范围] 让你建立起稳定,意味着你可以更好的与其他开发者共享 ...
- WebView 加载网页返回后,jsp界面数据消失(一个斜杆引起来的风波)
http://ip:port//interface/app/index.jsp 如果不小心就会把,port后面的//两个斜杆给忽略... 当有两个斜杆时,webview仍可以将网页,正常加载.但是数据 ...
- Java冒泡具体的原理,以及下标的变化
原理:比较两个相邻的元素,将值大的元素交换至右端. 思路:依次比较相邻的两个数,将小数放在前面,大数放在后面.即在第一趟:首先比较第1个和第2个数,将小数放前,大数放后.然后比较第2个数和第3个数,将 ...