Neural Network Basics
在学习NLP之前还是要打好基础,第二部分就是神经网络基础。
知识点总结:
1.神经网络概要:

2. 神经网络表示:

第0层为输入层(input layer)、隐藏层(hidden layer)、输出层(output layer)组成。
3. 神经网络的输出计算:

4.三种常见激活函数:

sigmoid:一般只用在二分类的输出层,因为二分类输出结果对应着0,1恰好也是sigmoid的阈值之间。
。它相比sigmoid函数均值在0附近,有数据中心化的优点,但是两者的缺点是z值很大很小时候,w几乎为0,学习速率非常慢。
ReLu: f(x)= max(0, x)
- 优点:相较于sigmoid和tanh函数,ReLU对于随机梯度下降的收敛有巨大的加速作用( Krizhevsky等的论文指出有6倍之多)。据称这是由它的线性,非饱和的公式导致的。
- 优点:sigmoid和tanh神经元含有指数运算等耗费计算资源的操作,而ReLU可以简单地通过对一个矩阵进行阈值计算得到。
- 缺点:在训练的时候,ReLU单元比较脆弱并且可能“死掉”。举例来说,当一个很大的梯度流过ReLU的神经元的时候,可能会导致梯度更新到一种特别的状态,在这种状态下神经元将无法被其他任何数据点再次激活。如果这种情况发生,那么从此所以流过这个神经元的梯度将都变成0。也就是说,这个ReLU单元在训练中将不可逆转的死亡,因为这导致了数据多样化的丢失。例如,如果学习率设置得太高,可能会发现网络中40%的神经元都会死掉(在整个训练集中这些神经元都不会被激活)。通过合理设置学习率,这种情况的发生概率会降低。
Assignment:


sigmoid 实现和梯度实现:
import numpy as np def sigmoid(x):
f = 1 / (1 + np.exp(-x))
return f def sigmoid_grad(f):
f = f * (1 - f)
return f def test_sigmoid_basic():
x = np.array([[1, 2], [-1, -2]])
f = sigmoid(x)
g = sigmoid_grad(f)
print (g)
def test_sigmoid():
pass
if __name__ == "__main__":
test_sigmoid_basic() #输出:
[[0.19661193 0.10499359]
[0.19661193 0.10499359]]
实现实现梯度check
import numpy as np
import random
def gradcheck_navie(f, x):
rndstate = random . getstate ()
random . setstate ( rndstate )
fx , grad = f(x) # Evaluate function value at original point
h = 1e-4
it = np. nditer (x, flags =[' multi_index '], op_flags =[' readwrite '])
while not it. finished :
ix = it. multi_index
### YOUR CODE HERE :
old_xix = x[ix]
x[ix] = old_xix + h
random . setstate ( rndstate )
fp = f(x)[0]
x[ix] = old_xix - h
random . setstate ( rndstate )
fm = f(x)[0]
x[ix] = old_xix
numgrad = (fp - fm)/(2* h)
### END YOUR CODE
# Compare gradients
reldiff = abs ( numgrad - grad [ix]) / max (1, abs ( numgrad ), abs ( grad [ix]))
if reldiff > 1e-5:
print (" Gradient check failed .")
print (" First gradient error found at index %s" % str(ix))
print (" Your gradient : %f \t Numerical gradient : %f" % ( grad [ix], numgrad return
it. iternext () # Step to next dimension
print (" Gradient check passed !") def sanity_check():
"""
Some basic sanity checks.
"""
quad = lambda x: (np.sum(x ** 2), x * 2) print ("Running sanity checks...")
gradcheck_naive(quad, np.array(123.456)) # scalar test
gradcheck_naive(quad, np.random.randn(3,)) # 1-D test
gradcheck_naive(quad, np.random.randn(4,5)) # 2-D test
print("") if __name__ == "__main__":
sanity_check()
Neural Network Basics的更多相关文章
- 吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 2 - Neural Network Basics(第二周测验 - 神经网络基础)
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A ...
- CS224d assignment 1【Neural Network Basics】
refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224 ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)
--------------------------------------------------中文翻译---------------------------------------------- ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- [C1W2] Neural Networks and Deep Learning - Basics of Neural Network programming
第二周:神经网络的编程基础(Basics of Neural Network programming) 二分类(Binary Classification) 这周我们将学习神经网络的基础知识,其中需要 ...
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记
第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main st ...
- (转)The Neural Network Zoo
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, ...
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
随机推荐
- NoHtml
private string NoHtml(string Htmlstring) { if (string.IsNullOrWhiteSpace(Htmlstring)) return string. ...
- Maximum Gap (ARRAY - SORT)
QUESTION Given an unsorted array, find the maximum difference between the successive elements in its ...
- Jmeter 录制脚本(二)
1)选择WorkBench,右键 Add -> Non-Test Elements -> HTTP(S) Test Script Recorder 2)在HTTP(S) Test Scri ...
- Vue Baidu Map 插件的使用
最近在做一个项目,技术采用的是Vue.js套餐,有个百度地图的需求,当时,大脑宕机,立马去引入百度地图API,当时想到两种方法,一种是在index.html中全局引入js,此法吾不喜,就采用了第二种异 ...
- [leetcode]304. Range Sum Query 2D - Immutable二维区间求和 - 不变
Given a 2D matrix matrix, find the sum of the elements inside the rectangle defined by its upper lef ...
- asp相关知识整理
WWW----World Wide Web(万维网) URL----Uniform Resource Locator(统一资源定位符) HTTP----Hyper Text Transfer Prot ...
- input框和文字对齐问题
css样式解决! style="vertical-align: text-bottom;margin-bottom: 2px;"一.问题产生的条件对于14像素大小的字体是没有本篇所 ...
- Eigen解线性方程组
一. 矩阵分解: 矩阵分解 (decomposition, factorization)是将矩阵拆解为数个矩阵的乘积,可分为三角分解.满秩分解.QR分解.Jordan分解和SVD(奇异值)分解等,常见 ...
- hdu 1175(BFS&DFS) 连连看
题目在这里:http://acm.hdu.edu.cn/showproblem.php?pid=1175 大家都很熟悉的连连看,原理基本就是这个,典型的搜索.这里用的是广搜.深搜的在下面 与普通的搜索 ...
- MySQL学习笔记-数据库后台线程
数据库后台线程 默认情况下讲述的InnoDB存储引擎,以后不再重复声明.后台线程有7个--4个IO thread,1个master thread,1个锁监控线程,1个错误监控线程.IO thread的 ...