Neural Network Basics
在学习NLP之前还是要打好基础,第二部分就是神经网络基础。
知识点总结:
1.神经网络概要:

2. 神经网络表示:

第0层为输入层(input layer)、隐藏层(hidden layer)、输出层(output layer)组成。
3. 神经网络的输出计算:

4.三种常见激活函数:

sigmoid:一般只用在二分类的输出层,因为二分类输出结果对应着0,1恰好也是sigmoid的阈值之间。
。它相比sigmoid函数均值在0附近,有数据中心化的优点,但是两者的缺点是z值很大很小时候,w几乎为0,学习速率非常慢。
ReLu: f(x)= max(0, x)
- 优点:相较于sigmoid和tanh函数,ReLU对于随机梯度下降的收敛有巨大的加速作用( Krizhevsky等的论文指出有6倍之多)。据称这是由它的线性,非饱和的公式导致的。
- 优点:sigmoid和tanh神经元含有指数运算等耗费计算资源的操作,而ReLU可以简单地通过对一个矩阵进行阈值计算得到。
- 缺点:在训练的时候,ReLU单元比较脆弱并且可能“死掉”。举例来说,当一个很大的梯度流过ReLU的神经元的时候,可能会导致梯度更新到一种特别的状态,在这种状态下神经元将无法被其他任何数据点再次激活。如果这种情况发生,那么从此所以流过这个神经元的梯度将都变成0。也就是说,这个ReLU单元在训练中将不可逆转的死亡,因为这导致了数据多样化的丢失。例如,如果学习率设置得太高,可能会发现网络中40%的神经元都会死掉(在整个训练集中这些神经元都不会被激活)。通过合理设置学习率,这种情况的发生概率会降低。
Assignment:


sigmoid 实现和梯度实现:
import numpy as np def sigmoid(x):
f = 1 / (1 + np.exp(-x))
return f def sigmoid_grad(f):
f = f * (1 - f)
return f def test_sigmoid_basic():
x = np.array([[1, 2], [-1, -2]])
f = sigmoid(x)
g = sigmoid_grad(f)
print (g)
def test_sigmoid():
pass
if __name__ == "__main__":
test_sigmoid_basic() #输出:
[[0.19661193 0.10499359]
[0.19661193 0.10499359]]
实现实现梯度check
import numpy as np
import random
def gradcheck_navie(f, x):
rndstate = random . getstate ()
random . setstate ( rndstate )
fx , grad = f(x) # Evaluate function value at original point
h = 1e-4
it = np. nditer (x, flags =[' multi_index '], op_flags =[' readwrite '])
while not it. finished :
ix = it. multi_index
### YOUR CODE HERE :
old_xix = x[ix]
x[ix] = old_xix + h
random . setstate ( rndstate )
fp = f(x)[0]
x[ix] = old_xix - h
random . setstate ( rndstate )
fm = f(x)[0]
x[ix] = old_xix
numgrad = (fp - fm)/(2* h)
### END YOUR CODE
# Compare gradients
reldiff = abs ( numgrad - grad [ix]) / max (1, abs ( numgrad ), abs ( grad [ix]))
if reldiff > 1e-5:
print (" Gradient check failed .")
print (" First gradient error found at index %s" % str(ix))
print (" Your gradient : %f \t Numerical gradient : %f" % ( grad [ix], numgrad return
it. iternext () # Step to next dimension
print (" Gradient check passed !") def sanity_check():
"""
Some basic sanity checks.
"""
quad = lambda x: (np.sum(x ** 2), x * 2) print ("Running sanity checks...")
gradcheck_naive(quad, np.array(123.456)) # scalar test
gradcheck_naive(quad, np.random.randn(3,)) # 1-D test
gradcheck_naive(quad, np.random.randn(4,5)) # 2-D test
print("") if __name__ == "__main__":
sanity_check()
Neural Network Basics的更多相关文章
- 吴恩达《深度学习》-课后测验-第一门课 (Neural Networks and Deep Learning)-Week 2 - Neural Network Basics(第二周测验 - 神经网络基础)
Week 2 Quiz - Neural Network Basics(第二周测验 - 神经网络基础) 1. What does a neuron compute?(神经元节点计算什么?) [ ] A ...
- CS224d assignment 1【Neural Network Basics】
refer to: 机器学习公开课笔记(5):神经网络(Neural Network) CS224d笔记3--神经网络 深度学习与自然语言处理(4)_斯坦福cs224d 大作业测验1与解答 CS224 ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 1、10个测验题(Neural Network Basics)
--------------------------------------------------中文翻译---------------------------------------------- ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 4、Logistic Regression with a Neural Network mindset
Logistic Regression with a Neural Network mindset Welcome to the first (required) programming exerci ...
- [C1W2] Neural Networks and Deep Learning - Basics of Neural Network programming
第二周:神经网络的编程基础(Basics of Neural Network programming) 二分类(Binary Classification) 这周我们将学习神经网络的基础知识,其中需要 ...
- 吴恩达《深度学习》-第一门课 (Neural Networks and Deep Learning)-第二周:(Basics of Neural Network programming)-课程笔记
第二周:神经网络的编程基础 (Basics of Neural Network programming) 2.1.二分类(Binary Classification) 二分类问题的目标就是习得一个分类 ...
- 课程一(Neural Networks and Deep Learning),第二周(Basics of Neural Network programming)—— 0、学习目标
1. Build a logistic regression model, structured as a shallow neural network2. Implement the main st ...
- (转)The Neural Network Zoo
转自:http://www.asimovinstitute.org/neural-network-zoo/ THE NEURAL NETWORK ZOO POSTED ON SEPTEMBER 14, ...
- (转)LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION
LSTM NEURAL NETWORK FOR TIME SERIES PREDICTION Wed 21st Dec 2016 Neural Networks these days are th ...
随机推荐
- Selenium 定位元素原理,基本API,显示等待,隐式等待,重试机制等等
Selenium 如何定位动态元素: 测试的时候会遇到元素每次变动的情况,例如: <div id="btn-attention_2030295">...</di ...
- Codeforces Round #520 (Div. 2)
Codeforces Round #520 (Div. 2) https://codeforces.com/contest/1062 A #include<bits/stdc++.h> u ...
- TZOJ 2415 Arctic Network(最小生成树第k小边)
描述 The Department of National Defence (DND) wishes to connect several northern outposts by a wireles ...
- POJ 2230 Watchcow(有向图欧拉回路)
Bessie's been appointed the new watch-cow for the farm. Every night, it's her job to walk across the ...
- 7.27-8.10 Problems
这是之前记录在word里的问题,现在誊到博客里.温故知新.时常回顾问题. 7.27 Bootstrap validator remote 验证出错 用Bootstrap validator插件验证表单 ...
- tiny4412 启动方式
1.iROM(BL0):是指Exynos4412的iROM中固化的启动代码,其作用是初始化系统时钟,设置看门狗,初始化堆和栈,加载8kb的bl1到Exynos4412的一个64kb大小内部sram(I ...
- ThreeJS中的点击与交互——Raycaster的用法
基础概念 坐标系 我们的手机屏幕是二维的,但是我们展示物体的世界是三维的,当我们在构建一个物体的时候我们是以一个三维世界既是世界坐标来构建,而转化为屏幕坐标展示在我们眼前,则需要经历多道矩阵变化,中间 ...
- CSS 图片居中
} .left-logo a { height: 100px; width: 55px; display: block; } .left-logo a img{ height: ; width: 55 ...
- firefox打开链接自动跳转至新页面设置
Firefox打开新页面时,活动页面会自动跳转到刚刚打开的页面,用着很不舒服,想打开新页面标签时,页面依然会停留在之前的页面. 在网上找了一下,设置方法如下: 在地址栏里输入about:config, ...
- (转)system.badimageformatexception 未能加载文件或程序集
“/xxxxx”应用程序中的服务器错误. ------------------------------------------------------------------------------- ...