【BZOJ3832】[POI2014]Rally(拓扑排序,动态规划)
【BZOJ3832】[POI2014]Rally(拓扑排序,动态规划)
题面
题解
这题好强啊,感觉学了好多东西似的。
首先发现了一个图画的很好的博客,戳这里
然后我来补充一下这题到底怎么做。
首先这个图是一个\(DAG\),我们对其进行拓扑排序,设\(f[i]\)表示以\(i\)开头的最长链长度,\(g[i]\)表示以\(i\)结尾的最长链长度,那么经过某条边\(u\rightarrow v\)的边贡献的最长路的贡献就是\(g[u]+f[v]+1\)。
我们发现,如果我们删除某一个点\(x\),那么我们必定能够把整个图分成两个部分,左侧我们认为是拓扑序小于\(x\)的点集,右侧是拓扑序大于\(x\)的点集,那么最终的答案显然是从左侧的某一个点连向右侧的某一个点能够贡献的最长链。所以我们只需要动态的维护左侧连向右侧的边的贡献就好了。我们先假设所有点都在右侧,按照拓扑序依次把所有点移到左侧就好了。我们可以直接在这个过程中统计答案。首先我们把所有左侧连向当前点的边的贡献全部删掉,然后统计一下答案,然后再把这个点连向右侧的边的贡献全部加入进来。当然,不仅仅只有边的贡献,显然\(f,g\)两个数组可以产生贡献,左侧的点产生\(g\)的贡献,右侧产生\(f\)的贡献,也和边的贡献一起丢进什么数据结构维护一下就好了。因为每条边只会加一次,删一次,所以复杂度是\(O((n+m)log)\)的。
#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
#define MAX 500500
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Heap
{
priority_queue<int> Q1,Q2;
void push(int x){Q1.push(x);}
void del(int x){Q2.push(x);}
bool empty(){while(!Q2.empty()&&Q1.top()==Q2.top())Q1.pop(),Q2.pop();return Q1.empty();}
int top(){if(empty())return 1e9;return Q1.top();}
}S;
int n,m,ans1=1e9,ans2;
struct Line{int v,next;}e[MAX<<2];
int h[MAX],cnt=1,dg[MAX];
inline void Add(int u,int v){e[cnt]=(Line){v,h[u]};h[u]=cnt++;}
int Q[MAX],f[MAX],g[MAX];
void Topsort()
{
int he=1,t=0;
for(int i=1;i<=n;++i)if(!dg[i])Q[++t]=i;
while(he<=t)
{
int u=Q[he++];
for(int i=h[u];i;i=e[i].next)
if(i&1)if(!--dg[e[i].v])Q[++t]=e[i].v;
}
for(int u=1;u<=n;++u)
for(int i=h[Q[u]];i;i=e[i].next)
if(i&1)g[e[i].v]=max(g[e[i].v],g[Q[u]]+1);
for(int u=n;u>=1;--u)
for(int i=h[Q[u]];i;i=e[i].next)
if(i&1)f[Q[u]]=max(f[Q[u]],f[e[i].v]+1);
}
int main()
{
n=read();m=read();
for(int i=1,u,v;i<=m;++i)u=read(),v=read(),Add(u,v),Add(v,u),++dg[v];
Topsort();
for(int i=1;i<=n;++i)S.push(f[i]);
for(int j=1;j<=n;++j)
{
int u=Q[j];S.del(f[u]);
for(int i=h[u];i;i=e[i].next)
if(!(i&1))S.del(f[u]+g[e[i].v]+1);
int d=S.top();S.push(g[u]);
if(d<ans1)ans1=d,ans2=u;
for(int i=h[u];i;i=e[i].next)
if(i&1)S.push(g[u]+f[e[i].v]+1);
}
printf("%d %d\n",ans2,ans1);
return 0;
}
【BZOJ3832】[POI2014]Rally(拓扑排序,动态规划)的更多相关文章
- BZOJ3832: [Poi2014]Rally(拓扑排序 堆)
题意 题目链接 Sol 最直观的思路是求出删除每个点后的最长路,我们考虑这玩意儿怎么求 设\(f[i]\)表示以\(i\)结尾的最长路长度,\(g[i]\)表示以\(i\)开始的最长路长度 根据DAG ...
- BZOJ3832[Poi2014]Rally——权值线段树+拓扑排序
题目描述 An annual bicycle rally will soon begin in Byteburg. The bikers of Byteburg are natural long di ...
- 【BZOJ-3832】Rally 拓扑序 + 线段树 (神思路题!)
3832: [Poi2014]Rally Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 168 Solved: ...
- bzoj 1093 最大半连通子图 - Tarjan - 拓扑排序 - 动态规划
一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径.若G'=(V ...
- Luogu3953 NOIP2017逛公园(最短路+拓扑排序+动态规划)
跑一遍dij根据最短路DAG进行拓扑排序,按拓扑序dp即可.wa了三发感觉非常凉. #include<iostream> #include<cstdio> #include&l ...
- BZOJ3832 [Poi2014]Rally 【拓扑序 + 堆】
题目链接 BZOJ3832 题解 神思路orz,根本不会做 设\(f[i]\)为到\(i\)的最长路,\(g[i]\)为\(i\)出发的最长路,二者可以拓扑序后\(dp\)求得 那么一条边\((u,v ...
- BZOJ3832 : [Poi2014]Rally
f[0][i]为i出发的最长路,f[1][i]为到i的最长路 新建源汇S,T,S向每个点连边,每个点向T连边 将所有点划分为两个集合S与T,一开始S中只有S,其它点都在T中 用一棵线段树维护所有连接属 ...
- 并不对劲的bzoj3832: [Poi2014]Rally
传送门-> 这题的原理看上去很神奇. 称拓扑图中入度为0的点为“起点”,出度为0的点为“终点”. 因为“起点”和“终点”可能有很多个,算起来会很麻烦,所以新建“超级起点”S,向所有点连边,“超级 ...
- 【BZOJ1471】不相交路径 题解(拓扑排序+动态规划+容斥原理)
题目描述 在有向无环图上给你两个起点和终点分别为$a,b,c,d$.问有几种路径方案使得能从$a$走到$b$的同时能从$c$走到$d$,且两个路径没有交点. $1\leq n\leq 200,1\le ...
- [luogu3573 POI2014] RAJ-Rally (拓扑排序 权值线段树)
传送门 Solution 在DAG中我们可以\(O(n)\)预处理\(Ds(u)\)表示从u表示以s为起点的最长路\(Dt(u)\)表示以u为终点的最长路,那么经过\((u,v)\)的最长路即为\(D ...
随机推荐
- 有关C++的数据类型(int,long,short,float,double等等)
再看C++ prime plus 第六版的时候 对数据类型又一次有些乱了,在看了这篇博客后,重新清晰起来了. 有关C++的数据类型(int,long,short,float,double等等)
- Spring-data-jpa 学习笔记(二)
通过上一篇笔记的,我们掌握了SpringData的相关概念及简单的用法.但上一篇笔记主要讲的是Dao层接口直接继承Repository接口,然后再自己定义方法.主要阐述了自定义方法时的 ...
- EZ 2018 03 09 NOIP2018 模拟赛(三)
最近挺久没写比赛类的blog了 链接:http://211.140.156.254:2333/contest/59 这次的题目主要考验的是爆搜+打表的能力 其实如果你上来就把所有题目都看过一次就可以知 ...
- 在 OSX 下使用 supervisor 管理服务
我为什么想用 supervisor 来管理服务呢?因为我在系统管理上属于处女座+任性的气质. OSX 下办公用的是普通用户,我不想在 root 权限下做过多设置污染我的系统. OSX 下的服务管理我感 ...
- Nginx浅析
Nginx浅析 Nginx是什么 总的来说,Nginx其实就是一个和apache类似的服务器软件. Nginx是一款轻量级的Web服务器/反向代理服务器以及电子邮件代理服务器,并在一个BSD-like ...
- Java收发邮件过程中具体的功能是怎么实现的
SMTP协议 用户连上邮件服务器后,要想给它发送一封电子邮件,需要遵循一定的通迅规则,SMTP协议就是用于定义这种通讯规则的. 因而,通常我们也把处理用户smtp请求(邮件发送请求)的邮件服务器称之为 ...
- 云容器云引擎:容器化微服务,Istio占C位出道
在精彩的软件容器世界中,当新项目涌现并解决你认为早已解决的问题时,这感觉就像地面在你的脚下不断地移动.在许多情况下,这些问题很久以前被解决,但现在的云原生架构正在推动着更大规模的应用程序部署,这就需要 ...
- 《陪孩子像搭积木一样学编程》,一起来玩Scratch(1)使用Scratch编程的基本流程
编程是一件很有趣的事情.初次接触编程,你可能不知所措,别担心,这并不复杂.首先,为了让读者对编程有大概的了解,可以把编写Scratch程序的过程分成7个步骤(如图1.8).注意,这是理想状态.在实际的 ...
- SimpleDateFormat的一些常用用法
/** SimpleDateFormat函数语法: G 年代标志符 y 年 M 月 d 日 h 时 在上午或下午 (1~12) H 时 在一天中 (0~23) m 分 s 秒 S 毫秒 E 星期 D ...
- BigDecimal的setScale()方法无效(坑)
最近在使用BigDecimal进行四舍五入时,发现setScale()方法设置的精度值并没有起作用,一度让我怀疑起是否jdk有bug,代码如下: 错误代码 double d = 7.199999999 ...