传送门

BZOJ 1565

题解

这道题也是个经典的最大权闭合子图……

复习一下最大权闭合子图是什么?

就是一个DAG上,每个点有个或正或负的点权,有的点依赖于另外一些点(如果选这个点,则被依赖点必选),问选出一些点的权值和最大是多少。

这个问题怎么解决?

网络流建图,被依赖点向依赖点连INF的边,若某点权为正则源点向它连相应容量的边,否则它向汇点连点权的绝对值容量的边。

问题是……这道题是有环的……

有环也没关系,按照题意,环上的点都不能选,那么直接让环上的所有点向汇点连INF边即可。

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <cstdlib>
#include <ctime>
using namespace std;
typedef long long ll;
#define enter putchar('\n')
#define space putchar(' ')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 605, M = 1000005, INF = 0x3f3f3f3f;
int n, m, src, des, ans;
int _adj[N], _nxt[M], _go[M], _ecnt;
#define id(x, y) (x * m + y + 1)
int ecnt = 1, adj[N], cur[N], dis[N], nxt[M], go[M], cap[M];
int low[N], dfn[N], idx, stk[N], top;
bool ins[N], mark[N]; void ADD(int u, int v, int w){
go[++ecnt] = v;
nxt[ecnt] = adj[u];
adj[u] = ecnt;
cap[ecnt] = w;
}
void add(int u, int v, int w){
ADD(u, v, w);
ADD(v, u, 0);
}
void _add(int u, int v){
_go[++_ecnt] = v;
_nxt[_ecnt] = _adj[u];
_adj[u] = _ecnt;
}
bool bfs(){
static int que[N], qr;
for(int i = 1; i <= des; i++)
cur[i] = adj[i], dis[i] = -1;
dis[src] = 0, que[qr = 1] = src;
for(int ql = 1; ql <= qr; ql++)
for(int u = que[ql], e = adj[u], v; e; e = nxt[e])
if(cap[e] && dis[v = go[e]] == -1)
dis[v] = dis[u] + 1, que[++qr] = v;
return dis[des] != -1;
}
int dfs(int u, int flow){
if(u == des) return flow;
int ret = 0;
for(int &e = cur[u], v; e; e = nxt[e])
if(cap[e] && dis[v = go[e]] == dis[u] + 1){
int delta = dfs(v, min(cap[e], flow - ret));
if(delta){
cap[e] -= delta;
cap[e ^ 1] += delta;
ret += delta;
if(ret == flow) return ret;
}
}
dis[u] = -1;
return ret;
}
int maxflow(){
int ret = 0;
while(bfs()) ret += dfs(src, INF);
return ret;
}
void tarjan(int u){
stk[++top] = u, ins[u] = 1;
low[u] = dfn[u] = ++idx;
for(int e = _adj[u], v; e; e = _nxt[e])
if(v = _go[e], !dfn[v])
tarjan(v), low[u] = min(low[u], low[v]);
else if(ins[v])
low[u] = min(low[u], dfn[v]);
if(low[u] == dfn[u]){
int v = stk[top];
if(v == u) top--, ins[u] = 0;
else
while(v != u){
ins[v = stk[top--]] = 0;
mark[v] = 1;
}
}
} int main(){
read(n), read(m), src = n * m + 1, des = n * m + 2;
for(int i = 0, k, w, x, y, num = 1; i < n; i++)
for(int j = 0; j < m; j++, num++){
if(j) _add(num - 1, num), add(num - 1, num, INF);
read(w), read(k);
if(w >= 0) add(src, num, w), ans += w;
else add(num, des, -w);
while(k--){
read(x), read(y);
_add(id(x, y), num);
add(id(x, y), num, INF);
}
}
for(int i = 1; i <= n * m; i++)
if(!dfn[i]) tarjan(i);
for(int i = 1; i <= n * m; i++)
if(mark[i]) add(i, des, INF);
write(ans - maxflow()), enter; return 0;
}

BZOJ 1565 [NOI2009]植物大战僵尸 | 网络流的更多相关文章

  1. BZOJ 1565: [NOI2009]植物大战僵尸(网络流+缩点)

    传送门 解题思路 最大权闭合子图.但是要注意一些细节,假如有一堆植物形成一个环,那么这些植物都是无敌的,并且他们保护的植物是无敌的,他们保护的保护的植物是无敌 的.所以要缩点,然后拓扑排序一次判无敌, ...

  2. bzoj 1565 [NOI2009]植物大战僵尸 解题报告

    1565: [NOI2009]植物大战僵尸 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 2161  Solved: 1000[Submit][Stat ...

  3. BZOJ 1565: [NOI2009]植物大战僵尸( 最小割 )

    先拓扑排序搞出合法的, 然后就是最大权闭合图模型了.... --------------------------------------------------------------------- ...

  4. Bzoj 1565: [NOI2009]植物大战僵尸 最大权闭合图,拓扑排序

    题目: http://cojs.tk/cogs/problem/problem.php?pid=410 410. [NOI2009] 植物大战僵尸 ★★★   输入文件:pvz.in   输出文件:p ...

  5. BZOJ 1565 NOI2009 植物大战僵尸 topo+最小割(最大权闭合子图)

    题目链接:https://www.luogu.org/problemnew/show/P2805(bzoj那个实在是有点小小的辣眼睛...我就把洛谷的丢出来吧...) 题意概述:给出一张有向图,这张有 ...

  6. bzoj 1565 [NOI2009]植物大战僵尸【tarjan+最大权闭合子图】

    一上来以为是裸的最大权闭合子图,上来就dinic -然后没过样例.不得不说样例还是非常良心的给了一个强连通分量,要不然就WA的生活不能自理了 然后注意到有一种特殊情况:每个植物向他保护的植物连边(包括 ...

  7. 1565: [NOI2009]植物大战僵尸 - BZOJ

    Description Input Output仅包含一个整数,表示可以获得的最大能源收入.注意,你也可以选择不进行任何攻击,这样能源收入为0.Sample Input3 210 020 0-10 0 ...

  8. [BZOJ1565][NOI2009]植物大战僵尸-[网络流-最小割+最大点权闭合子图+拓扑排序]

    Description 传送门 Solution em本题知识点是用网络流求最大点权闭合子图. 闭合图定义:图中任何一个点u,若有边u->v,则v必定也在图中. 建图:运用最小割思想,将S向点权 ...

  9. 洛谷$P2805\ [NOI2009]$植物大战僵尸 网络流

    正解:网络流 解题报告: 传送门$QwQ$ 题面好长昂,,,我大概概括下$QwQ$?有个$n\cdot m$的网格,每个格子有一株植物,击溃一株植物$(x,y)$需要付出$S_{(x,y)}$的代价( ...

随机推荐

  1. odoo之显示前端,数据,可选择

    def create(self,cr,uid,vals,context=None): if context is None: context ={} if vals.get('name','/')== ...

  2. EF Core中如何取消跟踪DbContext中所有被跟踪的实体

    首先定义一个DbContext的扩展类DbContextDetachAllExtension,其中包含一个DbContext的扩展方法DetachAll,用来取消跟踪DbContext中所有被跟踪的实 ...

  3. 20155320《网络对抗》MSF基础应用

    20155320<网络对抗>MSF基础应用 基础问题回答 用自己的话解释什么是exploit,payload,encode 于exploit,我觉得exploit是利用一些工具和方法,通过 ...

  4. Hiberante持久化对象的3种状态

        近日一同事问我关于Hibernate中对象的3种状态的问题,因此特意总结一下.在Hibernate中对象是有以下3中状态: 瞬时态(transient object): 没有OID值,没有被s ...

  5. 【MEF】构建一个WPF版的ERP系统

    原文:[MEF]构建一个WPF版的ERP系统 引言 MEF是微软的一个扩展性框架,遵循某种约定将各个部件组合起来.而ERP系统的一大特点是模块化,它们两者的相性很好,用MEF构建一个ERP系统是相当合 ...

  6. 让vim成为VS的编辑器

    编辑代码是还是感觉vim的比较方便--于是让vim成为VS的编辑器. 发现,安装了VsVim之后,也不失VS的便捷性,相当不错呢-- 对了我用的是VS2012---- 1.菜单栏->工具-> ...

  7. 在sourceinsight中添加快速注释 Ctrl+/

    1.搜索文件:utils.em(C:\Program Files (x86)\Source Insight 3)2.用sourceinsight打开文件:utils.em3.在文件末尾添加下面代码 m ...

  8. 生成本地测试用https证书,支持通配符和多域名,初学OpenSSL

    18-01-26在v2ex上看到一妹纸发的<身为一个 21 岁的年轻程序员,我已经腰突了(躺>,哈哈,感同身受,想到这几天我左腿麻木持续了好几天,前几天屁股疼的只要坐下就站不起来,不过站着 ...

  9. 基于tensorflow2.0 使用tf.keras实现Fashion MNIST

    本次使用的是2.0测试版,正式版估计会很快就上线了 tf2好像更新了蛮多东西 虽然教程不多 还是找了个试试 的确简单不少,但是还是比较喜欢现在这种写法 老样子先导入库 import tensorflo ...

  10. [T-ARA][너너너][你你你]

    歌词来源:http://music.163.com/#/song?id=22704480 作曲 : Cheang Hai Kee [作曲 : Cheang Hai Kee] 作词 : Cheang H ...