CV_BOOST_IMPL
CvClassifier* cvCreateStumpClassifier( CvMat* trainData, //训练样本的数据,包含图像大小。数量,类别,权重等
int flags, //0表示矩阵的列是训练样本。1表示行是训练样本
CvMat* trainClasses, //表示训练样本的类别矩阵
CvMat* /*typeMask*/,
CvMat* missedMeasurementsMask,
CvMat* compIdx, //特征序列
CvMat* sampleIdx, //训练样本排序后的寻列
CvMat* weights, //训练样本的权重矩阵
CvClassifierTrainParams* trainParams//训练參数
)
{
CvStumpClassifier* stump = NULL;
int m = 0; /* 样本数量number of samples */
int n = 0; /* 特征数量number of components */
uchar* data = NULL;
int cstep = 0; //一个特征(component)在水平方向上的长度,即是水平方向上所占字节数
int sstep = 0; //一个样本(sample)在水平方向上的长度,即是水平方向上所占字节数(这两个參数我看了非常长时间才看出来)
uchar* ydata = NULL;
int ystep = 0;
uchar* idxdata = NULL;
int idxstep = 0;
int l = 0; /* number of indices */
uchar* wdata = NULL;
int wstep = 0; int* idx = NULL;
int i = 0; float sumw = FLT_MAX;
float sumwy = FLT_MAX;
float sumwyy = FLT_MAX; CV_Assert( trainData != NULL );
CV_Assert( CV_MAT_TYPE( trainData->type ) == CV_32FC1 );
CV_Assert( trainClasses != NULL );
CV_Assert( CV_MAT_TYPE( trainClasses->type ) == CV_32FC1 );
CV_Assert( missedMeasurementsMask == NULL );
CV_Assert( compIdx == NULL );
CV_Assert( weights != NULL );
CV_Assert( CV_MAT_TYPE( weights->type ) == CV_32FC1 );
CV_Assert( trainParams != NULL ); data = trainData->data.ptr;
if( CV_IS_ROW_SAMPLE( flags ) )//当traindata训练样本是按行排列,一行表示一个训练样本在不同特征下的特征值
{
cstep = CV_ELEM_SIZE( trainData->type );
sstep = trainData->step;
m = trainData->rows; //行数表示样本数量
n = trainData->cols; //列数表示特征的个数
}
else //当traindata训练样本是按列排列,一列表示一个训练样本在不同特征下的特征值
{
sstep = CV_ELEM_SIZE( trainData->type );
cstep = trainData->step;
m = trainData->cols; //列数表示样本的数量
n = trainData->rows; //行数表示特征的个数
} ydata = trainClasses->data.ptr;
if( trainClasses->rows == 1 )
{
assert( trainClasses->cols == m );
ystep = CV_ELEM_SIZE( trainClasses->type );
}
else
{
assert( trainClasses->rows == m );
ystep = trainClasses->step;
} wdata = weights->data.ptr;
if( weights->rows == 1 )
{
assert( weights->cols == m );
wstep = CV_ELEM_SIZE( weights->type );
}
else
{
assert( weights->rows == m );
wstep = weights->step;
} l = m;
if( sampleIdx != NULL )
{
assert( CV_MAT_TYPE( sampleIdx->type ) == CV_32FC1 ); idxdata = sampleIdx->data.ptr;
if( sampleIdx->rows == 1 )
{
l = sampleIdx->cols;
idxstep = CV_ELEM_SIZE( sampleIdx->type );
}
else
{
l = sampleIdx->rows;
idxstep = sampleIdx->step;
}
assert( l <= m );
} idx = (int*) cvAlloc( l * sizeof( int ) );//为idx分配内存
stump = (CvStumpClassifier*) cvAlloc( sizeof( CvStumpClassifier) );//为stump分配内存 /* START */
memset( (void*) stump, 0, sizeof( CvStumpClassifier ) );//stump内存初始化为零 stump->eval = cvEvalStumpClassifier;
stump->tune = NULL;
stump->save = NULL;
stump->release = cvReleaseStumpClassifier; stump->lerror = FLT_MAX;
stump->rerror = FLT_MAX;
stump->left = 0.0F;
stump->right = 0.0F; /* copy indices */
if( sampleIdx != NULL )
{
for( i = 0; i < l; i++ )
{
idx[i] = (int) *((float*) (idxdata + i*idxstep));
}
}
else
{
for( i = 0; i < l; i++ )
{
idx[i] = i;
}
} for( i = 0; i < n; i++ ) //遍历全部特征
{
CvValArray va; va.data = data + i * ((size_t) cstep);
va.step = sstep;
icvSortIndexedValArray_32s( idx, l, &va );//对数据进行排序
if( findStumpThreshold_32s[(int) ((CvStumpTrainParams*) trainParams)->error]
//该error是计算不纯度的方式,包含四种,各自是:熵不纯度,吉尼不纯度,错分类不纯度,和最小二乘不纯度
( data + i * ((size_t) cstep), sstep,
wdata, wstep, ydata, ystep, (uchar*) idx, sizeof( int ), l,
&(stump->lerror), &(stump->rerror),
&(stump->threshold), &(stump->left), &(stump->right),
&sumw, &sumwy, &sumwyy ) ) //寻找树桩分类器的阈值
{
stump->compidx = i;
}
} /* for each component */ /* END */ cvFree( &idx ); if( ((CvStumpTrainParams*) trainParams)->type == CV_CLASSIFICATION_CLASS )
{
stump->left = 2.0F * (stump->left >= 0.5F) - 1.0F;
stump->right = 2.0F * (stump->right >= 0.5F) - 1.0F;
} return (CvClassifier*) stump;
}

cvCreateStumpClassifier的更多相关文章

  1. opencv源代码之中的一个:cvboost.cpp

    我使用的是opencv2.4.9.安装后.我的cvboost..cpp文件的路径是........\opencv\sources\apps\haartraining\cvboost.cpp.研究源代码 ...

  2. 史上最全opencv源代码解读,opencv源代码具体解读文件夹

    本博原创,如有转载请注明本博网址http://blog.csdn.net/ding977921830/article/details/46799043. opencv源代码主要是基于adaboost算 ...

随机推荐

  1. 洛谷P3379倍增LCA

    传送门 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> ...

  2. mapreduce的组件介绍

    第一部分:重要的组件 Combiner •什么是Combiner •combine函数把一个map函数产生的<key,value>对(多个key, value)合并成一个新的<key ...

  3. SqlServer共用表达式(CTE)With As

    共用表表达式(CTE)可以看成是一个临时的结果集,可以再SELECT,INSERT,UPDATE,DELETE,MARGE语句中多次引用. 一好处:使用共用表表达式可以让语句更加清晰简练. 1.可以定 ...

  4. JavaScript——双向链表实现

    本文版权归博客园和作者吴双本人共同所有,转载和爬虫请注明原文链接 http://www.cnblogs.com/tdws/ 下午分享了JavaScript实现单向链表,晚上就来补充下双向链表吧.对链表 ...

  5. JMS(Java消息服务)

    JMS即Java消息服务(Java Message Service)应用程序接口是一个Java平台中关于面向消息中间件(MOM:指的是利用高效可靠的消息传递机制进行平台无关的数据交流,并基于数据通信来 ...

  6. 001.Git简介与安装

    一 git介绍 1.1 概述 Git是一个开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目. Git 是 Linus Torvalds 为了帮助管理 Linux 内核开发而开发的一个开放 ...

  7. 010.MySQL-Keepalived搭配脚本04

    vim /etc/keepalived/check_MySQL.sh #!/bin/bash pkill keepalived

  8. 跟厂长学PHP7内核(六):变量之zval

    记得网上流传甚广的段子"PHP是世界上最好的语言",暂且不去讨论是否言过其实,但至少PHP确实有独特优势的,比如它的弱类型,即只需要$符号即可声明变量,使得PHP入手门槛极低,成为 ...

  9. C#泛型的抗变与协变

    C#泛型的抗变与协变 学习自 C#本质论6.0 https://www.cnblogs.com/pugang/archive/2011/11/09/2242380.html Overview 一直以来 ...

  10. 条件随机场(crf)及tensorflow代码实例

    对于条件随机场的学习,我觉得应该结合HMM模型一起进行对比学习.首先浏览HMM模型:https://www.cnblogs.com/pinking/p/8531405.html 一.定义 条件随机场( ...