机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.add(进行像素点的加和)
1.cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) 用于获得光流估计所需要的角点
参数说明:old_gray表示输入图片,mask表示掩模,feature_params:maxCorners=100角点的最大个数,qualityLevel=0.3角点品质,minDistance=7即在这个范围内只存在一个品质最好的角点
2. pl, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params) 用于获得光流检测后的角点位置
参数说明:pl表示光流检测后的角点位置,st表示是否是运动的角点,err表示是否出错,old_gray表示输入前一帧图片,frame_gray表示后一帧图片,p0表示需要检测的角点,lk_params:winSize表示选择多少个点进行u和v的求解,maxLevel表示空间金字塔的层数
3. cv2.add(frame, mask) # 将两个图像的像素进行加和操作
参数说明:frame表示输入图片,mask表示掩模
光流估计:通过当前时刻与前一时刻的亮度不变的特性I(x, y, t) = I(x+∆x, y+∆y, t+∆t) 使用lucas-kanade算法进行求解问题, 我们需要求得的是x,y方向的速度

下面是lucas-kanade的推导公式, 即位置发生变动时,其像素点的大小没有发生变化,
I(x, y, t) = I(x+dx, y+dy, t+dt)
= I(x, y, t) + Ixdx + Iydy + Itdt 使用泰勒基数进行展开
对上式进行化解即:
Ixdx + Iydy + Itdt = 0 Ix表示x轴的梯度方向,Iy表示y轴的梯度方向,It表示单位时间上的像素点的变化
如果我们使用前后两帧的变化, 那么dx和dy也就是表示x轴和y轴的速度,返回的结果是dx和dy,即在x轴和y轴方向上移动的步数,我们就可以知道目标的位置了

下面是实际求解u和v的过程,根据上述的空间一致性,我们选择出关键点周围的25个点进行求解,即(5, 5)的方框, 构造Au = b 进行求解,我们可以看出(A^T*A)^-1
但是当前像素点不一定可逆,如果保证可逆呢,即A^T*A的特征值λ1和λ2接近相等且较大,符合条件的就是角点, 因此使用角点去求解u和v
代码:
第一步:使用cv2.capture读入视频
第二步:构造角点检测所需参数, 构造lucas kanade参数
第三步:拿到第一帧图像,并做灰度化, 作为光流检测的前一帧图像
第四步:使用cv2.goodFeaturesToTrack获得光流检测所需要的角点
第五步:构造一个mask用于画直线
第六步:读取一张图片,进行灰度化,作为光流检测的后一帧图像
第七步:使用cv2.caclOpticalFlowPyrLK进行光流检测
第八步:使用st==1获得运动后的角点,原始的角点位置
第九步:循环获得角点的位置,在mask图上画line,在后一帧图像上画角点
第十步:使用cv2.add()将mask和frame的像素点相加并进行展示
第十一步:使用后一帧的图像更新前一帧的图像,同时使用运动的后一帧的角点位置来代替光流检测需要的角点
import numpy as np
import cv2 # 第一步:视频的读入
cap = cv2.VideoCapture('test.avi') # 第二步:构建角点检测所需参数
feature_params = dict(maxCorners=100,
qualityLevel=0.3,
minDistance=7) # lucas kanade参数
lk_params = dict(winSize=(15, 15),
maxLevel=2) # 随机颜色条
color = np.random.randint(0, 255, (100, 3)) # 第三步:拿到第一帧图像并灰度化作为前一帧图片
ret, old_frame = cap.read()
old_gray = cv2.cvtColor(old_frame, cv2.COLOR_BGR2GRAY)
# 第四步:返回所有检测特征点,需要输入图片,角点的最大数量,品质因子,minDistance=7如果这个角点里有比这个强的就不要这个弱的
p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) # 第五步:创建一个mask, 用于进行横线的绘制
mask = np.zeros_like(old_frame) while(True):
# 第六步:读取图片灰度化作为后一张图片的输入
ret, frame = cap.read()
frame_gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) # 第七步:进行光流检测需要输入前一帧和当前图像及前一帧检测到的角点
pl, st, err = cv2.calcOpticalFlowPyrLK(old_gray, frame_gray, p0, None, **lk_params) # 第八步:读取运动了的角点st == 1表示检测到的运动物体,即v和u表示为0
good_new = pl[st==1]
good_old = p0[st==1] # # 第九步:绘制轨迹
for i, (new, old) in enumerate(zip(good_new, good_old)):
a, b = new.ravel()
c, d = old.ravel()
mask = cv2.line(mask, (a, b), (c, d), color[i].tolist(), 2)
frame = cv2.circle(frame, (a, b), 5, color[i].tolist(), -1)
# 第十步:将两个图片进行结合,并进行图片展示
img = cv2.add(frame, mask) cv2.imshow('frame', img)
k = cv2.waitKey(150) & 0xff
if k == 27:
break # 第十一步:更新前一帧图片和角点的位置
old_gray = frame_gray.copy()
p0 = good_new.reshape(-1, 1, 2)
# p0 = cv2.goodFeaturesToTrack(old_gray, mask=None, **feature_params) cv2.destroyAllWindows()
cap.release()

机器学习进阶-光流估计 1.cv2.goodFeaturesToTrack(找出光流估计所需要的角点) 2.cv2.calcOpticalFlowPyrLK(获得光流检测后的角点位置) 3.cv2.add(进行像素点的加和)的更多相关文章
- 机器学习进阶-项目实战-信用卡数字识别 1.cv2.findContour(找出轮廓) 2.cv2.boudingRect(轮廓外接矩阵位置) 3.cv2.threshold(图片二值化操作) 4.cv2.MORPH_TOPHAT(礼帽运算突出线条) 5.cv2.MORPH_CLOSE(闭运算图片内部膨胀) 6. cv2.resize(改变图像大小) 7.cv2.putText(在图片上放上文本)
7. cv2.putText(img, text, loc, text_font, font_scale, color, linestick) # 参数说明:img表示输入图片,text表示需要填写的 ...
- 机器学习进阶-图像金字塔与轮廓检测-轮廓检测 1.cv2.cvtColor(图像颜色转换) 2.cv2.findContours(找出图像的轮廓) 3.cv2.drawContours(画出图像轮廓) 4.cv2.contourArea(轮廓面积) 5.cv2.arcLength(轮廓周长) 6.cv2.aprroxPloyDP(获得轮廓近似) 7.cv2.boudingrect(外接圆)..
1. cv2.cvtcolor(img, cv2.COLOR_BGR2GRAY) # 将彩色图转换为灰度图 参数说明: img表示输入的图片, cv2.COLOR_BGR2GRAY表示颜色的变换形式 ...
- 机器学习进阶-图像金字塔与轮廓检测-模板匹配(单目标匹配和多目标匹配)1.cv2.matchTemplate(进行模板匹配) 2.cv2.minMaxLoc(找出矩阵最大值和最小值的位置(x,y)) 3.cv2.rectangle(在图像上画矩形)
1. cv2.matchTemplate(src, template, method) # 用于进行模板匹配 参数说明: src目标图像, template模板,method使用什么指标做模板的匹配 ...
- 机器学习进阶-背景建模-(帧差法与混合高斯模型) 1.cv2.VideoCapture(进行视频读取) 2.cv2.getStructureElement(构造形态学的卷积) 3.cv2.createBackgroundSubtractorMOG2(构造高斯混合模型) 4.cv2.morpholyEx(对图像进行形态学的变化)
1. cv2.VideoCapture('test.avi') 进行视频读取 参数说明:‘test.avi’ 输入视频的地址2. cv2.getStructureElement(cv2.MORPH_E ...
- 机器学习进阶-案例实战-答题卡识别判 1.cv2.getPerspectiveTransform(获得投射变化后的H矩阵) 2.cv2.warpPerspective(H获得变化后的图像) 3.cv2.approxPolyDP(近似轮廓) 4.cv2.threshold(二值变化) 7.cv2.countNonezeros(非零像素点个数)6.cv2.bitwise_and(与判断)
1.H = cv2.getPerspectiveTransform(rect, transform_axes) 获得投射变化后的H矩阵 参数说明:rect表示原始的位置左上,右上,右下,左下, tra ...
- 机器学习进阶-案例实战-图像全景拼接-图像全景拼接(RANSCA) 1.sift.detectAndComputer(获得sift图像关键点) 2.cv2.findHomography(计算单应性矩阵H) 3.cv2.warpPerspective(获得单应性变化后的图像) 4.cv2.line(对关键点位置进行连线画图)
1. sift.detectAndComputer(gray, None) # 计算出图像的关键点和sift特征向量 参数说明:gray表示输入的图片 2.cv2.findHomography(kp ...
- 从一亿个ip找出出现次数最多的IP(分治法)
/* 1,hash散列 2,找到每个块出现次数最多的(默认出现均匀)—–>可以用字典树 3,在每个块出现最多的数据中挑选出最大的为结果 */ 问题一: 怎么在海量数据中找出重复次数最多的一个 算 ...
- 机器学习进阶-图像特征sift-SIFT特征点 1.cv2.xfeatures2d.SIFT_create(实例化sift) 2. sift.detect(找出关键点) 3.cv2.drawKeypoints(画出关键点) 4.sift.compute(根据关键点计算sift向量)
1. sift = cv2.xfeatures2d.SIFT_create() 实例化 参数说明:sift为实例化的sift函数 2. kp = sift.detect(gray, None) 找出 ...
- 机器学习进阶-目标追踪-SSD多进程执行 1.cv2.dnn.readnetFromCaffe(用于读取已经训练好的caffe模型) 2.delib.correlation_tracker(生成追踪器) 5.cv2.writer(将图片写入视频中) 6.cv2.dnn.blobFromImage(图片归一化) 10.multiprocessing.process(生成进程)
1. cv2.dnn.readNetFromCaffe(prototxt, model) 用于进行SSD网络的caffe框架的加载 参数说明:prototxt表示caffe网络的结构文本,model ...
随机推荐
- go get golang.org/x 包失败解决方法
由于墙的原因,国内使用 go get安装golang 官方包可能会失败 解决方法 方法1 [不需要FQ] Win10下相关配置: GOPATH : E:\go 安装记录: E:\>go get ...
- C++中的指针与引用的区别与联系
引用与指针实质上都是间接地指代另一个变量,引用相当于该变量的外号或者小名,而指针实质上是指向该变量的地址进而操作该变量 区别1:指针的地址与该变量不同,但引用的地址与该变量相同相同 #include& ...
- springboot(二 如何访问静态资源和使用模板引擎,以及 全局异常捕获)
在我们开发Web应用的时候,需要引用大量的js.css.图片等静态资源. 默认配置 Spring Boot默认提供静态资源目录位置需置于classpath下,目录名需符合如下规则: /static / ...
- console.log()换行和document.write()换行
<!DOCTYPE html><html ><head><meta charset="utf-8"><title>ddd ...
- 理一下docker在各平台上的运行机制
理一下docker在各平台上的运行机制 首先,从内核共享与否 docker在linux上共享内核,无需虚拟化,完全支持native功能(https://docs.docker.com/engine/i ...
- 引用文章 如何在lambda中引入递归调用
// clang++ 3.5 // maybe gcc 4.9 support it, but I don't test it #include<iostream> int main() ...
- [UE4]爆头和穿墙
一.LineTracebyChannel的Out Hit值展开后有一个名为“Hit Bone Name”(击中的骨骼名称),以此来判断击中的是否是头部,进而实现爆头的目的(爆头:高伤害,一枪毙命) 二 ...
- [UE4]RPC,远程调用
RPC 一.Remote Procedure Call:远程程序调用 二.一个进程调用另外一个进程上的函数 由于“Server-shoot”方法被标记为“在服务器上运行”,所以尽管是在第二个窗口(客户 ...
- JDK1.6 Java.lang.Null.Pointer.Exception
先来看一下JDK1.6的API: NullPointerException (Java Platform SE 6) public class NullPointerException extends ...
- 在线学习和在线凸优化(online learning and online convex optimization)—在线凸优化框架3
近年来,许多有效的在线学习算法的设计受到凸优化工具的影响. 此外,据观察,大多数先前提出的有效算法可以基于以下优雅模型联合分析: 凸集的定义: 一个向量 的Regret定义为: 如前所述,算法相对于竞 ...