定义两点的距离$d(x,y)$为$x$到$y$路径上边权异或和,则两棵树相同当且仅当$\forall 1\le i\le n$,$d(1,i)$相同

新建一个节点0,连边$(0,1)$,初始权值为0,且不能以这条边为对象操作(但操作与1相连的边会影响其)

记$d_{i}=d(0,i)$,考虑一次操作$(x,y)$对$d_{i}$的影响,恰好是交换$d_{x}$和$d_{y}$

最终,令$a_{i}$为目标树中$d(1,i)$的值,即要求$d_{i}\oplus d_{1}=a_{i}$

同时,记$b_{i}$为初始树中$d(0,i)$的值(也即$d(1,i)$),那么$d_{i}$即$b_{i}$重新排列的结果,有$\bigoplus_{i=1}^{n}d_{i}=\bigoplus_{i=1}^{n}b_{i}$

将之代入前者,根据$n$为奇数,可得$d_{1}=\bigoplus_{i=1}^{n}a_{i}\bigoplus_{i=1}^{n}b_{i}$,再判定$d_{1}$是否在本来的$b_{i}$中,以及$b_{i}\oplus d_{1}$是否等于$a_{i}$(排序后的结果)即可

 1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 struct Edge{
5 int nex,to,len1,len2;
6 }edge[N<<1];
7 int E,n,x,y,z1,z2,head[N],a[N],b[N];
8 void add(int x,int y,int z1,int z2){
9 edge[E].nex=head[x];
10 edge[E].to=y;
11 edge[E].len1=z1;
12 edge[E].len2=z2;
13 head[x]=E++;
14 }
15 void dfs(int k,int fa,int s1,int s2){
16 b[k]=s1;
17 a[k]=s2;
18 for(int i=head[k];i!=-1;i=edge[i].nex)
19 if (edge[i].to!=fa)dfs(edge[i].to,k,s1^edge[i].len1,s2^edge[i].len2);
20 }
21 int main(){
22 scanf("%d",&n);
23 memset(head,-1,sizeof(head));
24 for(int i=1;i<n;i++){
25 scanf("%d%d%d%d",&x,&y,&z1,&z2);
26 add(x,y,z1,z2);
27 add(y,x,z1,z2);
28 }
29 dfs(1,0,0,0);
30 for(int i=1;i<=n;i++)b[0]^=a[i];
31 for(int i=1;i<=n;i++)b[0]^=b[i];
32 for(int i=1;i<=n;i++)b[i]^=b[0];
33 sort(a+1,a+n+1);
34 sort(b+1,b+n+1);
35 if (b[1]){
36 printf("NO");
37 return 0;
38 }
39 for(int i=1;i<=n;i++)
40 if (a[i]!=b[i]){
41 printf("NO");
42 return 0;
43 }
44 printf("YES");
45 }

[atAGC052B]Tree Edges XOR的更多相关文章

  1. CF1055F Tree and XOR

    CF1055F Tree and XOR 就是选择两个数找第k大对儿 第k大?二分+trie上验证 O(nlognlogn) 直接按位贪心 维护可能的决策点(a,b)表示可能答案的对儿在a和b的子树中 ...

  2. 解题:CF1055F Tree and XOR

    题面 树上路径是可以通过到根的路径和LCA差出来的,所以建立一棵Trie树按位贪心即可......吗? 发现空间并不够,需要我们每层现建,要记录每个数和它异或答案之后在这一层插进去的编号 #inclu ...

  3. [atAGC052F]Tree Vertices XOR

    结论 注意到如果$x$周围有偶数个1,对$x$操作显然不会改变$a_{x}$,因此不妨强制操作的点周围要有奇数个1,不难发现此时恰好会改变该点,即令$a_{x}=a_{x}\oplus 1$ 称$\{ ...

  4. Weights Assignment For Tree Edges

    题目: (我的题目很长,你忍一下--) 题目分析: 这道题目的体面比较复杂,先是讲了一下树是怎样的一个结构,并且告诉我们在这里,他是以什么样的一种方式描述一棵树的,就是通过描述每个节点的父节点是哪个( ...

  5. codeforces 342E :Xenia and Tree

    Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...

  6. BZOJ3282: Tree

    传送门 又是权限题= =,过了NOIp我就要去当一只权限狗! LCT裸题,get到了两个小姿势. 1.LCA操作应该在access中随时updata 2.Link操作可以更简单 void Link(i ...

  7. CodeForces 682C Alyona and the Tree (树+dfs)

    Alyona and the Tree 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/C Description Alyona ...

  8. cf202-div 1-B - Apple Tree:搜索,数论,树的遍历

      http://codeforces.com/contest/348/problem/B   B. Apple Tree time limit per test 2 seconds memory l ...

  9. Codeforces Round #358 (Div. 2) C. Alyona and the Tree 水题

    C. Alyona and the Tree 题目连接: http://www.codeforces.com/contest/682/problem/C Description Alyona deci ...

随机推荐

  1. CSharpEntityFramework与CodeFirst实践

    CSharpEntityFramework与CodeFirst实践 前言 当我们进行开发的时候,常常会用到数据库来对数据进行持久化的操作,有的时候,我们并不想要在进行代码开发的过程中,还去关注数据库的 ...

  2. 题解 Beautiful Pair

    题目传送门 题目大意 给出一个 \(n\) 个点的序列 \(a_{1,2,...,n}\) ,问有多少对点对 \((i,j)\) 满足 \(a_i\times a_j\le a_k(i\le k\le ...

  3. 小白自制Linux开发板 七. USB驱动配置

    本文章基于https://whycan.com/t_3087.htmlhttps://whycan.com/t_6021.html整理 F1c100s芯片支持USB的OTG模式,也就是可以通过更改Us ...

  4. 【c++ Prime 学习笔记】目录索引

    第1章 开始 第Ⅰ部分 C++基础 第2章 变量和基本类型 第3章 字符串.向量和数组 第4章 表达式 第5章 语句 第6章 函数 第7章 类 第 Ⅱ 部分 C++标准库 第8章 IO库 第9章 顺序 ...

  5. Egg.js学习与实战系列 · 文件上传配置

    在使用Egg.js搭建文件上传服务时,遇到了几个一般新手都会遇到的坑. 经查阅官方文档,Egg框架中默认使用egg-multipart插件进行文件上传,所以上传文件前需要做相关的配置. 上传文件提示: ...

  6. py3.8安装

    ubantu python3.8# 命令下载wget https://www.python.org/ftp/python/3.8.1/Python-3.8.1.tar.xz#解压tar -xvJf P ...

  7. AIApe问答机器人Scrum Meeting 4.29

    Scrum Meeting 4 日期:2021年4月29日 会议主要内容概述:汇报两日工作,讨论任务优先级. 一.进度情况 组员 负责 两日内已完成的工作 后两日计划完成的工作 工作中遇到的困难 李明 ...

  8. [技术博客] BeautifulSoup4分析网页

    [技术博客] BeautifulSoup4分析网页 使用BeautifulSoup4进行网页文本分析 前言 进行网络爬虫时我们需要从网页源代码中提取自己所需要的信息,分析整理后存入数据库中. 在pyt ...

  9. 【二食堂】Beta - Scrum Meeting 4

    Scrum Meeting 4 例会时间:5.17 18:30~18:50 进度情况 组员 当前进度 今日任务 李健 1. 继续完成文本区域划词添加的功能 issue 1. 划词功能已经实现,继续开发 ...

  10. Linux有什么可取之处竟如此受欢迎

    什么是Linux? Linux是一个操作系统软件.和Windows不同的是,Linux是一套开放源代码程序的.并可以自由传播的类Unix操作系统,它是一个支持多用户.多任务.多线程和多CPU的操作系统 ...