\(\mathcal{Description}\)

  Link.

  给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位。求将其中恰好 \(k\) 个 - 替换为 +,其余 - 替换为 * 的所有方案得到的表达式结果之和。答案模 \((10^9+7)\)。

  \(n\le10^5\)(可能有无意义的多层括号嵌套),- 的总数 \(m\le2.5\times10^3\)。

\(\mathcal{Solution}\)

  复杂表达式问题,应当考虑按匹配括号建树,并在树上 DP。

  考虑树上结点 \(u\) 以及它的孩子们 \(v_1,\cdots,v_c\),它们代表了形如 u=(v1)-(v2)-...-(vc) 的表达式。令 \(f_{u,i}\) 表示 \(u\) 从左到右合并了一些孩子,用了 \(i\) 个 + 时,所有表达式结果之和;\(g_i\) 表示 \(u\) 从左到右合并了一些孩子,用了 \(i\) 个 + 时,所有后缀乘积之和。设已合并的孩子们共有 \(s_u\) 个 +,现欲合并孩子 \(v\),其有 \(s_v\) 个 +,转移分 +, * 讨论:

\[\begin{aligned}f'_{u,i+j+1}&\longleftarrow^+\binom{s_v}{j}f_{u,i}+\binom{su}{i}f_{v,j},\\f'_{u,i+j}&\longleftarrow^+\binom{s_v}{j}(f_{u,i}-g_i)+g_if_{v,i},\\g'_{i+j+1}&\longleftarrow^+\binom{s_u}{i}f_{v,j},\\g'_{i+j}&\longleftarrow^+g_if_{v,j},\\s_u&\longleftarrow^+s_v+1.\end{aligned}
\]

  转移复杂度是树上背包,总复杂度 \(\mathcal O(n+m^2)\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#pragma GCC optimize( "Ofast" )

#include <bits/stdc++.h>

#define rep( i, l, r ) for ( int i = l, rep##i = r; i <= rep##i; ++i )
#define per( i, r, l ) for ( int i = r, per##i = l; i >= per##i; --i ) const int MAXN = 2e5, MAXM = 5e3, MOD = 1e9 + 7;
int n, k, m, node, siz[MAXM + 5], mtc[MAXN * 3 + 5];
int comb[MAXM + 5][MAXM + 5], f[MAXM + 5][MAXM + 5];
char str[MAXN * 3 + 5], tmps[MAXN + 5]; inline int imin( const int u, const int v ) { return u < v ? u : v; }
inline int imax( const int u, const int v ) { return u < v ? v : u; }
inline int mul( const int u, const int v ) { return 1ll * u * v % MOD; }
inline int sub( int u, const int v ) { return ( u -= v ) < 0 ? u + MOD : u; }
inline int add( int u, const int v ) { return ( u += v ) < MOD ? u : u - MOD; }
inline void addeq( int& u, const int v ) { ( u += v ) >= MOD && ( u -= MOD ); } inline void init() {
int len = n; n = 0;
rep ( i, 1, len ) {
if ( '0' <= tmps[i] && tmps[i] <= '9' ) {
str[++n] = '(', str[++n] = tmps[i], str[++n] = ')';
} else {
str[++n] = tmps[i];
m += tmps[i] == '-';
}
} static int stk[MAXN * 3 + 5]; int top = 0;
rep ( i, 1, n ) {
if ( str[i] == '(' ) stk[++top] = i;
else if ( str[i] == ')' ) mtc[mtc[stk[top]] = i] = stk[top], --top;
} comb[0][0] = 1;
rep ( i, 1, m ) {
comb[i][0] = 1;
rep ( j, 1, i ) comb[i][j] = add( comb[i - 1][j - 1], comb[i - 1][j] );
}
} inline int solve( int l, int r ) {
if ( mtc[l] == r ) return solve( l + 1, r - 1 );
int u = ++node, *fu = f[u];
if ( l == r ) return fu[0] = str[l] ^ '0', u; int g[MAXM + 5];
for ( int p = l, v, fir = true; p < r; ) {
if ( str[p] != '(' ) { ++p; continue; }
const int *fv = f[v = solve( p, mtc[p] )]; p = mtc[p] + 1; if ( fir ) {
rep ( i, 0, siz[v] ) fu[i] = g[i] = fv[i];
siz[u] = siz[v], fir = false;
continue;
} static int tmp[MAXM + 5];
rep ( i, 0, siz[u] ) rep ( j, 0, siz[v] ) {
addeq( tmp[i + j + 1], add( mul( fu[i], comb[siz[v]][j] ),
mul( fv[j], comb[siz[u]][i] ) ) );
addeq( tmp[i + j], add( mul( sub( fu[i], g[i] ),
comb[siz[v]][j] ), mul( g[i], fv[j] ) ) );
}
rep ( i, 0, siz[u] + siz[v] + 1 ) fu[i] = tmp[i], tmp[i] = 0;
rep ( i, 0, siz[u] ) rep ( j, 0, siz[v] ) {
addeq( tmp[i + j], mul( g[i], fv[j] ) );
addeq( tmp[i + j + 1], mul( comb[siz[u]][i], fv[j] ) );
}
rep ( i, 0, siz[u] + siz[v] + 1 ) g[i] = tmp[i], tmp[i] = 0;
siz[u] += siz[v] + 1;
}
return u;
} int main() {
freopen( "operator.in", "r", stdin );
freopen( "operator.out", "w", stdout ); scanf( "%d %d %s", &n, &k, tmps + 1 );
init(); //, fprintf( stderr, "%s\n", str + 1 );
printf( "%d\n", f[solve( 1, n )][k] );
return 0;
}

Solution -「多校联训」消失的运算符的更多相关文章

  1. Solution -「多校联训」排水系统

    \(\mathcal{Description}\)   Link.   在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...

  2. Solution -「多校联训」I Love Random

    \(\mathcal{Description}\)   给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...

  3. Solution -「多校联训」签到题

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...

  4. Solution -「多校联训」朝鲜时蔬

    \(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...

  5. Solution -「多校联训」假人

    \(\mathcal{Description}\)   Link.   一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...

  6. Solution -「多校联训」古老的序列问题

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...

  7. Solution -「多校联训」Sample

    \(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...

  8. Solution -「多校联训」光影交错

    \(\mathcal{Description}\)   Link.   一个游戏包含若干次卡牌抽取,每次以 \(p_l\) 的概率得到 \(+1\),\(p_d\) 的概率得到 \(-1\),否则得到 ...

  9. Solution -「多校联训」数学考试

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个函数,第 \(i\) 个有 \(f_i(x)=a_ix^3+b_ix^2+cx_i+d~(x\in[l_i, ...

随机推荐

  1. 华为云 Kubernetes 管理员实训 四 课后作业

    练习一 创建一个Service和一个Pod作为其后端.通过kubectl describe获得该Service和对应Endpoints的信息. Service的名称为<hwcka-004-1-s ...

  2. redis中文乱码问题

    1.可以直接打开dos指令框输入指令进去redis数据库,因为在安装的时候就已经勾选了配置默认的环境变量. 2.可以输入ip进去,redis-cli.exe -h 192.168.32.8 -p 63 ...

  3. C语言 生成一个随机数

    随机数的生成 有缺陷的生成方式 生成随机数可以使用 <stdlib.h> 里的 int rand(void); 函数实现! 注释: C语言中还有一个 random() 函数可以获取随机数, ...

  4. HDU 2018 母牛的故事 (递归入门)

    原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=2018 思路分析: 问题分析:这道题的递推关系非常类似斐波那契数列,由题意不难得到以下函数递推式: 对于 ...

  5. 推荐一个最懂程序员的google插件

    0.前言 很多人应该也和我一样,使用google浏览器时,它的主页是真不咋地,太单调了,用起来贼不爽,想整它很久了 一打开就是上面的样子,让我看起来真心真心不爽 当然:为了这个不关技术的瞎犊子事情,曾 ...

  6. [STM32F10x] 利用定时器测量频率

    硬件:STM32F103C8T6 平台:ARM-MDk V5.11 原理 利用STM32F10x的定时器的捕获(Capture)单元测量输入信号的频率. 基本原理是通过两次捕获达到的计数器的差值,来计 ...

  7. 【刷题-LeetCode】275. H-Index II

    H-Index II Given an array of citations sorted in ascending order (each citation is a non-negative in ...

  8. axios请求的封装

    /* axios的请求封装 */         //axios的原生写法get,post请求         //第一个参数为请求地址,第二个参数为请求的参数,params是将参数拼接在url的后面 ...

  9. Servlet监听器统计网站在线人数

    本节我们利用 Servlet 监听器接口,完成一个统计网站在线人数的案例.当一个用户登录后,显示欢迎信息,同时显示出当前在线人数和用户名单.当用户退出登录或 Session 过期时,从在线用户名单中删 ...

  10. 返回值String是文本数据

    MyController类中: index.jsp中 修改text前: 改为text后: 还是有乱码是因为使用这个ISO-8859-1编码处理的 MyController中修改注解中属性