Solution -「CF 575G」Run for beer
\(\mathcal{Description}\)
Link.
给定 \(n\) 个点 \(m\) 条边的无向图,边有边权,一个人初始速度为 \(1\),每走一条边速度 \(\div10\),求从 \(1\) 走到 \(n\) 的最小耗时。
\(n,m\le10^5\),\(0\le\text{边权}\le9\)。
\(\mathcal{Solution}\)
直观地,路径长度即为把经过的边权从低位到高位写成的十进制数。
首先排除前导 \(0\)——把从终点出发,仅走边权为 \(0\) 的边可达的结点全部与终点缩点。此时的最短路需要保证路径条数最少的前提下保证字典序最小。BFS 分层,维护当前层外围最优的一堆结点,用它们向下层扩展直到到达起点。
\(\mathcal{Code}\)
#include <queue>
#include <cstdio>
#include <vector>
const int MAXN = 2e5, MAXM = 2e5;
int n, m, ecnt, head[MAXN + 5], d[MAXN + 5], suf[MAXN + 5];
bool vis[MAXN + 5];
std::vector<int> curp, nxtp;
std::queue<int> que;
struct Edge { int to, cst, nxt; } graph[MAXM * 2 + 5];
inline void link ( const int s, const int t, const int c ) {
graph[++ ecnt] = { t, c, head[s] };
head[s] = ecnt;
}
inline void initReach () {
for ( int i = 1; i <= n; ++ i ) d[i] = -1;
d[1] = 0, que.push ( 1 );
for ( int u; ! que.empty (); ) {
u = que.front (), que.pop ();
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ! ~ d[v = graph[i].to] ) {
d[v] = d[u] + 1, que.push ( v );
}
}
}
}
inline int zeroReach () {
int mind = d[n];
curp.push_back ( n ), vis[n] = true;
for ( int cur = 0; cur ^ curp.size (); ++ cur ) {
int u = curp[cur];
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( ! vis[v = graph[i].to] && ! graph[i].cst ) {
curp.push_back ( v ), vis[v] = true, suf[v] = u;
if ( mind > d[v] ) mind = d[v];
}
}
}
return mind;
}
int main () {
scanf ( "%d %d", &n, &m );
for ( int i = 1, u, v, w; i <= m; ++ i ) {
scanf ( "%d %d %d", &u, &v, &w ), ++ u, ++ v;
link ( u, v, w ), link ( v, u, w );
}
initReach ();
int dist = zeroReach ();
bool zero = true;
for ( int l = dist; l; -- l ) {
int dig = 10;
for ( int u: curp ) {
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( d[v = graph[i].to] + 1 == l && graph[i].cst < dig ) {
dig = graph[i].cst;
}
}
}
if ( dig ) zero = false;
if ( l == 1 || ! zero ) putchar ( dig ^ '0' );
for ( int u: curp ) {
for ( int i = head[u], v; i; i = graph[i].nxt ) {
if ( d[v = graph[i].to] + 1 == l && graph[i].cst == dig && ! vis[v] ) {
vis[v] = true, nxtp.push_back ( v ), suf[v] = u;
}
}
}
curp = nxtp, nxtp.clear ();
}
if ( zero ) putchar ( '0' );
int ans = 1, u;
for ( u = 1; u ^ n; ++ ans, u = suf[u] );
printf ( "\n%d\n0", ans ), u = 1;
do printf ( " %d", ( u = suf[u] ) - 1 ); while ( u ^ n );
putchar ( '\n' );
return 0;
}
Solution -「CF 575G」Run for beer的更多相关文章
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
- Solution -「CF 599E」Sandy and Nuts
\(\mathcal{Description}\) Link. 指定一棵大小为 \(n\),以 \(1\) 为根的有根树的 \(m\) 对邻接关系与 \(q\) 组 \(\text{LCA}\ ...
随机推荐
- javascript中new url()属性,轻松解析url地址
1.首先写一个假的地址(q=URLUtils.searchParams&topic=api)相当于当前的window.location.href const urlParams = new U ...
- Python常用功能函数系列总结(五)
本节目录 常用函数一:向量距离和相似度计算 常用函数二:pagerank 常用函数三:TF-IDF 常用函数四:关键词提取 常用函数一:向量距离和相似度计算 KL距离.JS距离.余弦距离 # -*- ...
- Go语言系列之标准库flag
Go语言内置的flag包实现了命令行参数的解析,flag包使得开发命令行工具更为简单. os.Args 如果你只是简单的想要获取命令行参数,可以像下面的代码示例一样使用os.Args来获取命令行参数. ...
- Hive的导入导出和常用过滤语句的学习
原文: https://www.toutiao.com/i6769166601871688196/?group_id=6769166601871688196 数据的导入 load data [loca ...
- nginx代理图片上传以及访问 nginx 图片上传完整版
nginx代理图片上传 首先需要利用nginx代理图片访问参考 https://www.cnblogs.com/TJ21/p/12609017.html 编写接受文件的controller 1 @Po ...
- host解析
首先了解一下什么是hosts文件: hosts是一个没有扩展名的系统文件,可以用记事本等文本编辑工具打开,起作用就是将一些常用的"网址域名"与其对应的"IP地址" ...
- Android Sensor.TYPE_STEP_COUNTER 计步器传感器 步数统计
注意:使用 计步器传感器 Sensor.TYPE_STEP_COUNTER 获取步数前需要手机支持该传感器 1.学习资料 1.1 SENSOR.TYPE_STEP_COUNTER 地址:开发者文档 翻 ...
- jsp标签 formatNumber、formatDate、parseNumber、parseDate的使用
引用本文的有关标签需要引用对应的标签库 <%--引入格式化动作标签库--%> <%@taglib prefix="fmt" uri="http://ja ...
- dp问题解题思路
[基本问题单元的定义]这取决于你所查看问题的角度,找到一个划分,推进问题的角度十分重要.作者找到的方式是dp[ i ][ j ],用来表示 substring( i , j),然后站在这个角度,假设s ...
- 微信小程序入门教程之二:页面样式
这个系列的上一篇教程,教大家写了一个最简单的 Hello world 微信小程序. 但是,那只是一个裸页面,并不好看.今天接着往下讲,如何为这个页面添加样式,使它看上去更美观,教大家写出实际可以使用的 ...