题目链接:https://leetcode.com/problems/super-egg-drop/

题意:给你K个鸡蛋以及一栋N层楼的建筑,已知存在某一个楼层F(0<=F<=N),在不高于F的楼层扔鸡蛋不会碎,鸡蛋碎了不能再用,没碎可以继续使用,问不论F的大小(0<=F<=N),至少需要测量多少次才能测出F的大小。题意挺好理解的,鸡蛋少的话操作肯定多点,相当于行下往上测,鸡蛋比较多就可以使用类似二分的想法了。

思路1:

  dp+二分  时间复杂度O(K*N*log N),空间复杂度O(K*N)  (自己第一次想的就是这个思路630ms,能过但是慢)

  假设我们有i个鸡蛋,我们从x层楼扔下去,如果碎了,说明F<x,相当于使用i-1个鸡蛋测量j-1层至少要测试多少次,个数加1即为答案;没碎,说明F>x,则我们使用i个鸡蛋测量x+1~N的楼层至少需要操作多少次,即N-x个楼层,下面的楼层不同考虑。二者的答案取较大的值即可。

  因此dp的思想就很明显了dp[i][j]表示使用i个鸡蛋测量j个楼层至少需要操作的次数,则dp[i][j] =min( max(dp[i-1][x-1],dp[i][j-x])+1 ,(x<=j)).

  该算法的复杂度是O(K*N^2),交上去应该会TLE

  通过观察我们可以发现dp[i-1][x-1]是随着x的增大而增大(或者不变)的(相同的鸡蛋数层数越多肯定测试次数也越多),同理dp[i][j-x]随着x的增大而减小的,而现在我们要求对于每个x,这两个数的较大值,最后再在这j个值中取一个较小值。如果是连续函数的话,就相当于求两条曲线高的那部分的最小值。如下图所示(图来自leetcode),求的是蓝色部分的最小值。所以我们可以通过二分求出二者“交点“(交点可能不存在)附近的那两个值,答案肯定是这两个值中的一个。所以降了一维,复杂度变为O(K*N*log N)。

class Solution {
public:
int superEggDrop(int K, int N) {
int dp[101][10001];
memset(dp,0,sizeof(dp));
for(int i=1;i<=K;i++)
for(int j=1;j<=N;j++){
dp[0][j]=1e9;
dp[i][j]=1e9;
int l=1,r=j;
int mid;
for(int k=1;k<=20;k++){
mid=(l+r)/2;
if(dp[i-1][mid-1]<dp[i][j-mid])
l=mid;
else r=mid;
}
if(dp[i-1][mid-1]<=dp[i][j-mid])
mid++;
dp[i][j]=min(dp[i-1][mid-1],dp[i][j-(mid-1)])+1;
}
return dp[K][N];
}
};  

思路2:

  dp方程仍然是思路一中的方程,但是对于dp[i][j-x],随着j增大,最优值x的取值也会增大,即下图中的交点,既然x是非递减的,不需要每次都遍历了,因此复杂度可以减少到O(N*K)

class Solution {
public:
int superEggDrop(int K, int N) {
int dp[101][10001];
memset(dp,0,sizeof(dp));
for(int i=1;i<=K;i++){
int x=1;
for(int j=1;j<=N;j++){
dp[0][j]=1e9;
dp[i][j]=1e9;
while(x<j&&max(dp[i-1][x-1],dp[i][j-x])>max(dp[i-1][x],dp[i][j-x-1]))
x++;
dp[i][j]=max(dp[i-1][x-1],dp[i][j-x])+1;
}
}
return dp[K][N];
}
};

  空间复杂度也可以利用循环数组降低到O(N):

class Solution {
public:
int superEggDrop(int K, int N) {
int dp[2][10001];
memset(dp,0,sizeof(dp));
int cnt=0;
for(int j=1;j<=N;j++)
dp[0][j] = dp[1][j] = 1e9;
for(int i=1;i<=K;i++){
int x = 1;
for(int j=1;j<=N;j++){
while(x<j&&max(dp[cnt^0][x-1],dp[cnt^1][j-x])>max(dp[cnt^0][x],dp[cnt^1][j-x-1]))
x++;
dp[cnt^1][j]=max(dp[cnt^0][x-1],dp[cnt^1][j-x])+1;
}
cnt=cnt^1;
}
return dp[cnt^0][N];
}
};

思路3:

  我们改变一下dp方程,dp[i][j]表示使用i个鸡蛋,j次操作,能够测量的最高楼层,假设我们采用最优策略,则对于第j次操作如果鸡蛋碎了,则需要使用i-1个鸡蛋,j-1次操作测量该层下面的楼层;如果鸡蛋没碎,则需要使用i个鸡蛋,j-1次操作测试上面的楼层,因此dp[i][j] = dp[i-1][j-1] + dp[i][j-1] + 1,我们需要找到最小的j使得dp[i][j]>=N 复杂度O(K*log N) (由于是找最小的j,因此外层循环是j)

class Solution {
public:
int superEggDrop(int K, int N) {
int **dp = new int *[K + 1];
for (int i = 0;i <= K;i++) {
dp[i] = new int[N + 1];
memset(dp[i], 0, 4 * (N + 1));
}
for (int j = 1;j<=N;j++)
for (int i = 1;i <= K;i++) {
dp[i][j] = dp[i - 1][j - 1] + dp[i][j - 1] + 1;
if (dp[i][j] >= N)
return j;
}
return N;
}
};  

LeetCode 887. Super Egg Drop的更多相关文章

  1. [LeetCode] 887. Super Egg Drop 超级鸡蛋掉落

    You are given K eggs, and you have access to a building with N floors from 1 to N.  Each egg is iden ...

  2. Leetcode 887 Super Egg Drop(扔鸡蛋) DP

    这是经典的扔鸡蛋的题目. 同事说以前在uva上见过,不过是扔气球.题意如下: 题意: 你有K个鸡蛋,在一栋N层高的建筑上,被要求测试鸡蛋最少在哪一层正好被摔坏. 你只能用没摔坏的鸡蛋测试.如果一个鸡蛋 ...

  3. 【LeetCode】887. Super Egg Drop 解题报告(Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 参考资料 日期 题目地址:https://leetc ...

  4. 887. Super Egg Drop

    You are given K eggs, and you have access to a building with N floors from 1 to N. Each egg is ident ...

  5. [Swift]LeetCode887. 鸡蛋掉落 | Super Egg Drop

    You are given K eggs, and you have access to a building with N floors from 1 to N. Each egg is ident ...

  6. Leetcode - 517 Super Washing Machines

    今天开始定期记录本人在leetcode上刷题时遇到的有意思的题目.   517. Super Washing Machines   You have n super washing machines ...

  7. [LeetCode] 313. Super Ugly Number 超级丑陋数

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  8. Leetcode 313. super ugly number

    Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all ...

  9. Coursera Algorithms week1 算法分析 练习测验: Egg drop 扔鸡蛋问题

    题目原文: Suppose that you have an n-story building (with floors 1 through n) and plenty of eggs. An egg ...

随机推荐

  1. java基础第一节课随笔

    第一题:1.定义一个HelloWold类2.在类中定义主方法3.在主方法中使用输出语句在dos控制台打印HelloWorld 打印结果如:HelloWorld4.在案例中使用当行注释.多行注释添加相关 ...

  2. 在spring配置文件中引入外部properties配置文件 context:property-placeholder

    在spring的配置文件中,有时我们需要注入很多属性值,这些属性全都写在spring的配置文件中的话,后期管理起来会非常麻烦.所以我们可以把某一类的属性抽取到一个外部配置文件中,使用时通用spring ...

  3. Python 5种方法实现单例模式

    基本介绍 一个对象只允许被一次创建,一个类只能创建一个对象,并且提供一个全局访问点. 单例模式应该是应用最广泛,实现最简单的一种创建型模式. 特点:全局唯一,允许更改 优缺点 优点: 避免对资源的多重 ...

  4. 【NX二次开发】uf5945获得旋转矩阵、uf5947根据变换矩阵移动或复制对象

    返回一个矩阵,可以绕任意轴旋转. 与uf5947结合可以将对象沿着任意轴进行旋转.不是所有对象都能用uf5947变换,带参的实体.部件都不可以用此函数变换.下面是旋转WCS的例子. extern Dl ...

  5. 【NX二次开发】 删除面操作

    录制修改封装删除面 DeleteFaces 1 #include <uf_defs.h> 2 #include <NXOpen/NXException.hxx> 3 #incl ...

  6. 《Learning to warm up cold Item Embeddings for Cold-start Recommendation with Meta Scaling and Shifting Networks》论文阅读

    <Learning to warm up cold Item Embeddings for Cold-start Recommendation with Meta Scaling and Shi ...

  7. Linux面试题(史上最全、持续更新、吐血推荐)

    文章很长,建议收藏起来,慢慢读! 疯狂创客圈为小伙伴奉上以下珍贵的学习资源: 疯狂创客圈 经典图书 : <Netty Zookeeper Redis 高并发实战> 面试必备 + 大厂必备 ...

  8. 还在担心写的一手烂SQL,送你4款工具

    对于正在运行的mysql,性能如何,参数设置的是否合理,账号设置的是否存在安全隐患,你是否了然于胸呢? 俗话说工欲善其事,必先利其器,定期对你的MYSQL数据库进行一个体检,是保证数据库安全运行的重要 ...

  9. 面试官:如何在分布式场景下生成全局唯一 ID?

    在分布式系统中,有一些场景需要使用全局唯一 ID ,可以和业务场景有关,比如支付流水号,也可以和业务场景无关,比如分库分表后需要有一个全局唯一 ID,或者用作事务版本号.分布式链路追踪等等,好的全局唯 ...

  10. NOIP模拟测试13「矩阵游戏&#183;跳房子&#183;优美序列」

    矩阵游戏 考试时思路一度和正解一样,考试到最后还是打了80分思路,结果80分打炸了只得了40分暴力分 题解 算出来第一列的总值,每次通过加每两列之间的差值得出下一列的总值 算第一列我们只需要让当前点* ...