Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

这一章介绍了如何估计time-varying 下的causal effect.

21.1 The g-formula for time-varying treatments

求静态的\(\mathbb{E}[Y^{\bar{a}}]\),

\[\sum_l \mathbb{E}[Y|\bar{A}=\bar{a}, \bar{L}=\bar{l}]\prod_{k=0}^K f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1}).
\]

至于动态的\(Y^g\),总感觉书上给的公式缺了一块.

21.2 IP weighting for time-varying treatments

同样是静态的:

\[W^{\bar{A}} = \prod_{k=0}^K \frac{1}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)},\\
SW^{\bar{A}} = \prod_{k=0}^K \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)}.\\
\]

21.3 A doubly robust estimator for time-varying treatments

一种doubly robust的估计方法.

21.4 G-estimation for time-varying treatments

\[H_k(\psi^{\dagger}) = Y - \sum_{j=k}^K A_j \gamma_j(\bar{A}_{j-1}, \bar{L}_{j}, \psi^{\dagger}).
\]

通过下式来估计:

\[\mathrm{logit}\:\mathrm{Pr} [A_k=1|H_k(\psi^{\dagger}), \bar{L}_k, \bar{A}_{k-1}] = \alpha_0 + \alpha_1 H_k(\psi^{\dagger}) + \alpha_2 W_k.
\]

21.5 Censoring is a time-varying treatment

当censoring也是一个time-varying变量的时候.

\[\sum_{\bar{l}} \mathbb{E}[Y|\bar{A}=a, \bar{C}=\bar{0}, \bar{L}=\bar{l}] \prod_{k=0}^K f(l_k|\bar{a}_{k-1}, c_{k-1}=0, \bar{l}_{k-1}).
\]
\[W^{\bar{C}} = \prod_{k=1}^{K+1} \frac{1}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0)}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
\]

Fine Point

Treatment and covariate history

Representations of the g-formula

G-estimation with a saturated structural nested model

Technical Point

The g-formula density for static strategies

The g-null paradox

A doubly estimator of \(\mathbb{E}[Y^{\bar{a}}]\) for time-varying treatments

Relation between marginal structural models and structural nested models (Part II)

A closed form estimator for linear structural nested mean models

Estimation of \(\mathbb{E}[Y^g]\) after g-estimation of a structural nested mean model

Chapter 21 G-Methods for Time-Varying Treatments的更多相关文章

  1. 零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior

    原文:零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior 本章将教大家如何运用Blend 4内建的行为注入元件「Mou ...

  2. Chapter 7:Statistical-Model-Based Methods

    作者:桂. 时间:2017-05-25  10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...

  3. MySQL Crash Course #13# Chapter 21. Creating and Manipulating Tables

    之前 manipulate 表里的数据,现在则是 manipulate 表本身. INDEX 创建多列构成的主键 自动增长的规定 查看上一次插入的自增 id 尽量用默认值替代 NULL 外键不可以跨引 ...

  4. 抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods

    2.1 Inclusion-Exclusion Roughly speaking, a "sieve method" in enumerative combinatorics is ...

  5. Thinking in Java from Chapter 21

    From Thinking in Java 4th Edition 并发 线程可以驱动任务,因此你需要一种描述任务的方式,这可由Runnable接口来提供. 要想定义任务,只需要实现Runnable接 ...

  6. Chapter 20: Diagnostics

    WHAT'S IN THIS CHAPTER?n Code contractsn Tracingn Event loggingn Performance monitoringWROX.COM CODE ...

  7. ESL翻译:Linear Methods for Regression

    chapter 3: Linear Methods for Regression 第3章:回归的线性方法 3.1 Introduction A linear regression model assu ...

  8. 《Think in Java》20 21(并发)

    chapter 20 注解 三种标准注解和四种元注解: 编写注解处理器 chapter 21 并发 基本的线程机制 定义任务 package cn.test; public class LiftOff ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. centos 7 重新获取IP地址

    1.安装软件包 dhclient # yum install dhclient 2.释放现有IP # dhclient -r 3.重新获取 # dhclient 4.查看获取到到IP # ip a

  2. jmeter设置参数化

    设置参数化方法有3种 第一种: 1.打开 jmeter,导入badboy录制的脚本 导入后记得选择"step"右键选择change controller ->逻辑控制器-&g ...

  3. java foreach循环抛出异常java.util.ConcurrentModificationException

    代码如下: for (Iterator<String> iter = list.iterator(); iter.hasNext(); ) { if (Integer.parseInt(i ...

  4. 【面试】【Linux】【Web】基础概念

    1. HTTP https://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol 2. TCP handshake https://en.wikipe ...

  5. 【Java 8】Stream.distinct() 列表去重示例

    在这篇文章里,我们将提供Java8 Stream distinct()示例. distinct()返回由该流的不同元素组成的流.distinct()是Stream接口的方法. distinct()使用 ...

  6. SQL 父子表,显示表中每条记录所在层级

    1.sqlserer 中有一张父子关系表,表结构如下: CREATE TABLE [dbo].[testparent]( [ID] [int] IDENTITY(1,1) NOT NULL, [nam ...

  7. 端口占用,windows下通过命令行查看和关闭端口占用的进程

    1.查找所有端口号对应的PID 端口号:8080 命令:netstat -ano|findstr "8080" 2.找到端口的PID并关闭 PID:1016 命令:taskkill ...

  8. JSP常用内置对象

    1.request 1.1getAttribute(String name) 2.getAttributeName() 3.getCookies() 4.getCharacterEncoding() ...

  9. 关于tensorflow无法使用gpu

    python3.6 无法使用tensorflow gpu 环境名称 test1 在控制台里进入环境 conda activate test1 使用python python 查看gpu能否使用 pri ...

  10. CF749A Bachgold Problem 题解

    Content 给定一个数 \(n\),求它最多能够拆分成多少个质数,并输出拆分成的每一个质数. 数据范围:\(2\leqslant n\leqslant 10^5\). Solution 我们考虑尽 ...