Hern\(\'{a}\)n M. and Robins J. Causal Inference: What If.

这一章介绍了如何估计time-varying 下的causal effect.

21.1 The g-formula for time-varying treatments

求静态的\(\mathbb{E}[Y^{\bar{a}}]\),

\[\sum_l \mathbb{E}[Y|\bar{A}=\bar{a}, \bar{L}=\bar{l}]\prod_{k=0}^K f(l_k|\bar{a}_{k-1}, \bar{l}_{k-1}).
\]

至于动态的\(Y^g\),总感觉书上给的公式缺了一块.

21.2 IP weighting for time-varying treatments

同样是静态的:

\[W^{\bar{A}} = \prod_{k=0}^K \frac{1}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)},\\
SW^{\bar{A}} = \prod_{k=0}^K \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)}.\\
\]

21.3 A doubly robust estimator for time-varying treatments

一种doubly robust的估计方法.

21.4 G-estimation for time-varying treatments

\[H_k(\psi^{\dagger}) = Y - \sum_{j=k}^K A_j \gamma_j(\bar{A}_{j-1}, \bar{L}_{j}, \psi^{\dagger}).
\]

通过下式来估计:

\[\mathrm{logit}\:\mathrm{Pr} [A_k=1|H_k(\psi^{\dagger}), \bar{L}_k, \bar{A}_{k-1}] = \alpha_0 + \alpha_1 H_k(\psi^{\dagger}) + \alpha_2 W_k.
\]

21.5 Censoring is a time-varying treatment

当censoring也是一个time-varying变量的时候.

\[\sum_{\bar{l}} \mathbb{E}[Y|\bar{A}=a, \bar{C}=\bar{0}, \bar{L}=\bar{l}] \prod_{k=0}^K f(l_k|\bar{a}_{k-1}, c_{k-1}=0, \bar{l}_{k-1}).
\]
\[W^{\bar{C}} = \prod_{k=1}^{K+1} \frac{1}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0)}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
\]

Fine Point

Treatment and covariate history

Representations of the g-formula

G-estimation with a saturated structural nested model

Technical Point

The g-formula density for static strategies

The g-null paradox

A doubly estimator of \(\mathbb{E}[Y^{\bar{a}}]\) for time-varying treatments

Relation between marginal structural models and structural nested models (Part II)

A closed form estimator for linear structural nested mean models

Estimation of \(\mathbb{E}[Y^g]\) after g-estimation of a structural nested mean model

Chapter 21 G-Methods for Time-Varying Treatments的更多相关文章

  1. 零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior

    原文:零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior 本章将教大家如何运用Blend 4内建的行为注入元件「Mou ...

  2. Chapter 7:Statistical-Model-Based Methods

    作者:桂. 时间:2017-05-25  10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...

  3. MySQL Crash Course #13# Chapter 21. Creating and Manipulating Tables

    之前 manipulate 表里的数据,现在则是 manipulate 表本身. INDEX 创建多列构成的主键 自动增长的规定 查看上一次插入的自增 id 尽量用默认值替代 NULL 外键不可以跨引 ...

  4. 抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods

    2.1 Inclusion-Exclusion Roughly speaking, a "sieve method" in enumerative combinatorics is ...

  5. Thinking in Java from Chapter 21

    From Thinking in Java 4th Edition 并发 线程可以驱动任务,因此你需要一种描述任务的方式,这可由Runnable接口来提供. 要想定义任务,只需要实现Runnable接 ...

  6. Chapter 20: Diagnostics

    WHAT'S IN THIS CHAPTER?n Code contractsn Tracingn Event loggingn Performance monitoringWROX.COM CODE ...

  7. ESL翻译:Linear Methods for Regression

    chapter 3: Linear Methods for Regression 第3章:回归的线性方法 3.1 Introduction A linear regression model assu ...

  8. 《Think in Java》20 21(并发)

    chapter 20 注解 三种标准注解和四种元注解: 编写注解处理器 chapter 21 并发 基本的线程机制 定义任务 package cn.test; public class LiftOff ...

  9. 39. Volume Rendering Techniques

    Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...

随机推荐

  1. acquire

    An acquired taste is an appreciation for something unlikely to be enjoyed by a person who has not ha ...

  2. 8. LINUX shell 环境变量

    wc –l file 计算文件行数, wc -w file  计算文件中的单词数, wc -c file   计算文件中的字符数 查看文件内容: cat .more

  3. 零基础学习java------38---------spring中关于通知类型的补充,springmvc,springmvc入门程序,访问保护资源,参数的绑定(简单数据类型,POJO,包装类),返回数据类型,三大组件,注解

    一. 通知类型 spring aop通知(advice)分成五类: (1)前置通知[Before advice]:在连接点前面执行,前置通知不会影响连接点的执行,除非此处抛出异常. (2)正常返回通知 ...

  4. 零基础学习java------day7------面向对象

    1. 面向对象 1.1 概述 面向过程:c语言 面向对象:java :python:C++等等 面向对象的概念: (万物皆对象)------think in java   everything  in ...

  5. Gradle—Android配置详解

    参考[1]彻底弄明白Gradle相关配置       [2]Android Studio gradle配置详解

  6. 4.2 rust 命令行参数

     从命令行读取参数 use std::env; fn main() { let args: Vec<String> = env::args().collect(); println!(&q ...

  7. Mybatis 批量插入

    一.首先对于批量数据的插入有两种解决方案(下面内容只讨论和Mysql交互的情况) 1)for循环调用Dao中的单条插入方法 2)传一个List<Object>参数,使用Mybatis的批量 ...

  8. 【Linux】【Problems】在fedora 9上解决依赖问题

    summary: 在32bit的fedora9上安装EMC客户端遇到无法解决的依赖问题 detail: rpm 安装: [root@hcszmons02 tmp]# rpm -ivh lgtoclnt ...

  9. vue实现input输入框的模糊查询

     最近在用uni-app做一个项目,使用的框架还是vue,想了好久才做出来 . HTML代码部分 <input type="text" focus class="s ...

  10. Spring Boot发布war包流程

    1.修改web model的pom.xml <packaging>war</packaging> SpringBoot默认发布的都是jar,因此要修改默认的打包方式jar为wa ...