Chapter 21 G-Methods for Time-Varying Treatments
- 21.1 The g-formula for time-varying treatments
- 21.2 IP weighting for time-varying treatments
- 21.3 A doubly robust estimator for time-varying treatments
- 21.4 G-estimation for time-varying treatments
- 21.5 Censoring is a time-varying treatment
- Fine Point
- Technical Point
- The g-formula density for static strategies
- The g-null paradox
- A doubly estimator of for time-varying treatments
- Relation between marginal structural models and structural nested models (Part II)
- A closed form estimator for linear structural nested mean models
- Estimation of after g-estimation of a structural nested mean model
这一章介绍了如何估计time-varying 下的causal effect.
21.1 The g-formula for time-varying treatments
求静态的\(\mathbb{E}[Y^{\bar{a}}]\),
\]
至于动态的\(Y^g\),总感觉书上给的公式缺了一块.
21.2 IP weighting for time-varying treatments
同样是静态的:
SW^{\bar{A}} = \prod_{k=0}^K \frac{f(A_k|\bar{A}_{k-1})}{f(A_k|\bar{A}_{k-1}, \bar{L}_k)}.\\
\]
21.3 A doubly robust estimator for time-varying treatments
一种doubly robust的估计方法.
21.4 G-estimation for time-varying treatments
\]
通过下式来估计:
\]
21.5 Censoring is a time-varying treatment
当censoring也是一个time-varying变量的时候.
\]
SW^{\bar{C}} = \prod_{k=1}^{K+1} \frac{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0)}{\mathrm{Pr}(C_k=0|\bar{A}_{k-1}, C_{k-1}=0,\bar{L}_k)}, \\
\]
Fine Point
Treatment and covariate history
Representations of the g-formula
G-estimation with a saturated structural nested model
Technical Point
The g-formula density for static strategies
The g-null paradox
A doubly estimator of \(\mathbb{E}[Y^{\bar{a}}]\) for time-varying treatments
Relation between marginal structural models and structural nested models (Part II)
A closed form estimator for linear structural nested mean models
Estimation of \(\mathbb{E}[Y^g]\) after g-estimation of a structural nested mean model
Chapter 21 G-Methods for Time-Varying Treatments的更多相关文章
- 零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior
原文:零元学Expression Blend 4 – Chapter 21 以实作案例学习MouseDragElementBehavior 本章将教大家如何运用Blend 4内建的行为注入元件「Mou ...
- Chapter 7:Statistical-Model-Based Methods
作者:桂. 时间:2017-05-25 10:14:21 主要是<Speech enhancement: theory and practice>的读书笔记,全部内容可以点击这里. 书中 ...
- MySQL Crash Course #13# Chapter 21. Creating and Manipulating Tables
之前 manipulate 表里的数据,现在则是 manipulate 表本身. INDEX 创建多列构成的主键 自动增长的规定 查看上一次插入的自增 id 尽量用默认值替代 NULL 外键不可以跨引 ...
- 抄书 Richard P. Stanley Enumerative Combinatorics Chapter 2 Sieve Methods
2.1 Inclusion-Exclusion Roughly speaking, a "sieve method" in enumerative combinatorics is ...
- Thinking in Java from Chapter 21
From Thinking in Java 4th Edition 并发 线程可以驱动任务,因此你需要一种描述任务的方式,这可由Runnable接口来提供. 要想定义任务,只需要实现Runnable接 ...
- Chapter 20: Diagnostics
WHAT'S IN THIS CHAPTER?n Code contractsn Tracingn Event loggingn Performance monitoringWROX.COM CODE ...
- ESL翻译:Linear Methods for Regression
chapter 3: Linear Methods for Regression 第3章:回归的线性方法 3.1 Introduction A linear regression model assu ...
- 《Think in Java》20 21(并发)
chapter 20 注解 三种标准注解和四种元注解: 编写注解处理器 chapter 21 并发 基本的线程机制 定义任务 package cn.test; public class LiftOff ...
- 39. Volume Rendering Techniques
Milan Ikits University of Utah Joe Kniss University of Utah Aaron Lefohn University of California, D ...
随机推荐
- acquire
An acquired taste is an appreciation for something unlikely to be enjoyed by a person who has not ha ...
- 8. LINUX shell 环境变量
wc –l file 计算文件行数, wc -w file 计算文件中的单词数, wc -c file 计算文件中的字符数 查看文件内容: cat .more
- 零基础学习java------38---------spring中关于通知类型的补充,springmvc,springmvc入门程序,访问保护资源,参数的绑定(简单数据类型,POJO,包装类),返回数据类型,三大组件,注解
一. 通知类型 spring aop通知(advice)分成五类: (1)前置通知[Before advice]:在连接点前面执行,前置通知不会影响连接点的执行,除非此处抛出异常. (2)正常返回通知 ...
- 零基础学习java------day7------面向对象
1. 面向对象 1.1 概述 面向过程:c语言 面向对象:java :python:C++等等 面向对象的概念: (万物皆对象)------think in java everything in ...
- Gradle—Android配置详解
参考[1]彻底弄明白Gradle相关配置 [2]Android Studio gradle配置详解
- 4.2 rust 命令行参数
从命令行读取参数 use std::env; fn main() { let args: Vec<String> = env::args().collect(); println!(&q ...
- Mybatis 批量插入
一.首先对于批量数据的插入有两种解决方案(下面内容只讨论和Mysql交互的情况) 1)for循环调用Dao中的单条插入方法 2)传一个List<Object>参数,使用Mybatis的批量 ...
- 【Linux】【Problems】在fedora 9上解决依赖问题
summary: 在32bit的fedora9上安装EMC客户端遇到无法解决的依赖问题 detail: rpm 安装: [root@hcszmons02 tmp]# rpm -ivh lgtoclnt ...
- vue实现input输入框的模糊查询
最近在用uni-app做一个项目,使用的框架还是vue,想了好久才做出来 . HTML代码部分 <input type="text" focus class="s ...
- Spring Boot发布war包流程
1.修改web model的pom.xml <packaging>war</packaging> SpringBoot默认发布的都是jar,因此要修改默认的打包方式jar为wa ...