[cf1458D]Flip and Reverse
将$s$中的01分别变为$1,-1$,即得到一个序列$a_{i}$(设其长度为$n$,下标范围为$[1,n]$)
对$a_{i}$建立一张有向图,其点集合为$Z$,并对$\forall 0\le k<n$从$\sum_{i=1}^{k}a_{i}$向$\sum_{i=1}^{k+1}a_{i}$连边(允许重边),那么$a_{i}$即对应于其中一条以0为起点的欧拉路
若对区间$[l,r]$操作,记操作后的序列为$a'_{i}$,则有$\sum_{i=l}^{r}a_{i}=0(=\sum_{i=l}^{r}a'_{i})$且$\forall l\le i\le r,a'_{i}=-a_{r-(i-l)}$
根据此性质,简单来分析前缀和的变化:
1.对于$k\not\in [l,r),\sum_{i=1}^{k}a'_{i}=\sum_{i=1}^{k}a_{i}$
2.对于$k\in [l,r),\sum_{i=1}^{k}a'_{i}=\sum_{i=1}^{l-1}a_{i}-\sum_{i=l}^{k}a_{r-(i-l)}=\sum_{i=1}^{r-(k-l)-1}a_{i}$
进一步的,再来分析这条欧拉路的变化,结合前缀和的变化即是将原本从$\sum_{i=1}^{l-1}a_{i}$到$\sum_{i=1}^{r}a_{i}$这一个环(注意两值相同)反转(将所有边变为反向边)并倒序经过
另一方面,显然每一个环(包括非简单环)都可以以此法操作(注意这里的操作是对欧拉路)
换言之,问题即通过这样的操作最小化这条欧拉路的字典序
实际上,问题也可以看作:将图中的边看作无向边后,最小化以0为起点的欧拉路字典序
注意到操作只是反转边的方向,那么得到的欧拉路一定是新问题中的欧拉路
另一方面,即要通过这条欧拉路(通过操作)构造出所有新问题中的欧拉路
对其归纳,若其第一步与这条欧拉路方向不同,分类讨论:
1.若该边仅存在一条(指无向边),那么起点的另一个方向即必然不存在边(否则这不是欧拉路),进而显然方向不会不同
2.若该边存在多条,之后总有一次从该边返回起点,从最初到该位置全部反转后方向即相同
进一步的,将两者第一步均删除后即变为归纳的问题(边数减少),也即得证
而对于这个新问题,可以利用图的特殊性直接贪心:初始$x=0$,每一次优先向$x-1$移动(除非该边仅存在一条且$x$到$x+1$仍有边,此时向$x+1$移动),最终显然字典序最小
时间复杂度为$o(n)$,可以通过

1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 500005
4 int t,n,x,sum,cnt[N<<1];
5 char s[N];
6 int main(){
7 scanf("%d",&t);
8 while (t--){
9 scanf("%s",s+1);
10 n=strlen(s+1),x=sum=n;
11 for(int i=0;i<=(n<<1);i++)cnt[i]=0;
12 for(int i=1;i<=n;i++){
13 if (s[i]=='0')cnt[--sum]++;
14 else cnt[sum++]++;
15 }
16 for(int i=1;i<=n;i++){
17 if ((cnt[x-1]>1)||(!cnt[x])){
18 putchar('0');
19 cnt[--x]--;
20 }
21 else{
22 putchar('1');
23 cnt[x++]--;
24 }
25 }
26 putchar('\n');
27 }
28 return 0;
29 }
[cf1458D]Flip and Reverse的更多相关文章
- CF1458D Flip and Reverse[题解]
Flip and Reverse 题目大意 给定一个 \(01\) 字符串,有机会进行若干次操作,对于每一次操作: 选择该字符串的子串,要求是该子串内包含数量相同的 \(0\) , \(1\) 字符. ...
- 多校联训 DS 专题
CF1039D You Are Given a Tree 容易发现,当 \(k\) 不断增大时,答案不断减小,且 \(k\) 的答案不超过 \(\lfloor\frac {n}{k}\rfloor\) ...
- 小白学jquery Mobile《构建跨平台APP:jQuery Mobile移动应用实战》连载四(场景切换)
作为一款真正有使用价值的应用,首先应该至少有两个页面,通过页面的切换来实现更多的交互.比如手机人人网,打开以后先是进入登录页面,登录后会有新鲜事,然后拉开左边的面板,能看到相册.悄悄话.应用之类的其他 ...
- bzoj 2631: tree 动态树+常数优化
2631: tree Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 1716 Solved: 576[Submit][Status] Descrip ...
- 白学jquery Mobile《构建跨平台APP:jQuery Mobile移动应用实战》串行4(场景变化)
作为一个真正的利用价格值应用,首先,你应该至少有两页,通过切换页面来实现很多其他互动.比如手机人人网,首先,打开后进入登录页面,将有登录后,新的东西.然后拉左侧面板.你可以看到相册.私人信息.像其他应 ...
- css3 翻牌动画
最近做了一个特效,css是从网上找的,地址是这个: CSS3 animate flip下的纸牌翻转效果实例页面 把其中核心的css代码扒出来如下: /* The properties in this ...
- MOG插件(葡萄牙语,略作翻译)
这次记录下MOG大神的插件,自从我发现了这个插件,似乎开启了一个新世界诶~~~ 网址 https://atelierrgss.wordpress.com 1. MOG_YuruYuri.js CARA ...
- WebApp之H5登录注册
代码indexhtml <!DOCTYPE html> <html> <head> <meta charset="utf-8"> & ...
- 平衡树 & LCT
1. 非旋 Treap(FHQ Treap) 1.1. 算法简介 FHQ Treap 的功能非常强大.它涵盖了 Treap 几乎所有的功能 所以我非常后悔学了 Treap,浪费时间. FHQ 的核心思 ...
随机推荐
- linux 测试2
.阅读目录●第一种:cat /dev/null > filename●第二种:: > filename●第三种:> filename●第四种:echo "" &g ...
- Python Pandas的使用 !!!!!详解
Pandas是一个基于python中Numpy模块的一个模块 Python在数据处理和准备⽅⾯⼀直做得很好,但在数据分析和建模⽅⾯就差⼀些.pandas帮助填补了这⼀空⽩,使您能够在Python中执 ...
- 2021record
2021-10-14 P2577 [ZJOI2004]午餐 2021-10-13 CF815C Karen and Supermarket(小小紫题,可笑可笑) P6748 『MdOI R3』Fall ...
- xshell连接vmware系统完整版
设置静态ip需要修改文件一共有两个要修改的文件vi /etc/resolv.confvi /etc/sysconfig/network-scripts/ifcfg-eno16777736 第一个文件 ...
- iOS能否自动扫描周边wifi信息并通过密码连接
能否获取系统wifi列表信息 不能,只能获取用户当前连接的wifi信息 https://developer.apple.com/forums/thread/112177 https://develop ...
- exe图标消失的解决方案
步骤 win + r组合键打开运行窗口 输入cmd,回车 在终端窗口右键粘贴即可 taskkill /im explorer.exe /f cd /d %userprofile%\appdata\lo ...
- python中常用的导包的方法和常用的库
python中常用的导包的方法 导入包和包名的方法:1.import package.module 2.from package.module import * 例一: ...
- UE4蓝图AI角色制作(七)之追逐玩家
15.追逐玩家 现在我们的AI无法做出任何决策,它总是执行相同的决策.我们先把感知系统中的相关信息提供给AI,让AI知道如何做出决策,然后我们会修改行为树.我们首先需要创建新的黑板键,这样我们就能在行 ...
- javascript-jquery-更改jquery对象
在许多情况下,jquery代码所做的事情变成了:生成jquery对象A,操作对jquery象A:更改为jquery对象B,操作jquery对象B:更改为jqueryC,操作jquery对象C..... ...
- 表示数值的字符串 牛客网 剑指Offer
表示数值的字符串 牛客网 剑指Offer 题目描述 请实现一个函数用来判断字符串是否表示数值(包括整数和小数).例如,字符串"+100","5e2"," ...