本文将同步发布于:

题目

题目链接:洛谷CF1468M

题意简述

给定 \(n\) 个集合 \(S_{1\sim n}\),问是否存在 \(i,j\) 满足 \(i\neq j\) 且 \(\left\lvert S_i\cap S_j\right\rvert\geq 2\)。

若存在,输出 \(i,j\)(任意一对都可);否则输出 \(-1\)。

\(n\leq 10^5\),\(\sum\limits_{i=1}^n\left\lvert S_i\right\rvert\leq 2\times 10^5\)。

题解

图论转化

直接思考有点难,考虑经典套路,我们把这个问题转化成二分图模型。

对于一个集合 \(S_i\),我们将其构造为一个左部点 \(i\)。

对于一个元素 \(x\),我们将其构造为一个右部点 \(x\)。

如果 \(x\in S_i\),那么图上有一条边 \((i,x)\)。

那么 \(\left\lvert S_i\cap S_j\right\rvert\geq 2\),就对应有至少两个右部点连到了同样的两个点。

换句话说,符合条件的答案对应了图中的一个四元环。

并且,这张图的度数总和为 \(\sum\limits_{i=1}^n\left\lvert S_i\right\rvert\)。

按点的度数分治

现在我们要解决的问题就是一个二分图内是否存在四元环。

这同样是一个简单的问题,具体地,我们考虑按点的度数分治:

  • 找到一个非负整数 \(B\);
  • 称度数 \(\geq B\) 的为大点,度数 \(< B\) 的为小点;
  • 对于大点,其个数为 \(\Theta\left(\frac{\sum\texttt{deg}}{B}\right)\)。

我们对于每个大左部点,标记其所有相连点,如果存在另一个左部点,其连接的标记点个数 \(\geq 2\),那么存在一个四元环。

我们对于每个小左部点,我们枚举其对应的所有的右部点对,然后对于每一个点对,我们枚举其最小值,然后标记其对应点,如果一个点在之前被标记过,那么就存在一个四元环。

根据上面的分析,我们得出算法的时间复杂度为 \(\Theta\left(\frac{\sum\texttt{deg}}{B}\sum\texttt{deg}+B\sum\texttt{deg}\right)\)。

理论分析可以得出,最优的时间复杂度为 \(\Theta\left(\sum\texttt{deg}\sqrt{\sum\texttt{deg}}\right)\)。

参考程序

#include<bits/stdc++.h>
using namespace std;
#define reg register
typedef long long ll;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++)
static char buf[1<<21],*p1=buf,*p2=buf;
#define flush() (fwrite(wbuf,1,wp1,stdout),wp1=0)
#define putchar(c) (wp1==wp2&&(flush(),0),wbuf[wp1++]=c)
static char wbuf[1<<21];int wp1;const int wp2=1<<21;
inline int read(void){
reg char ch=getchar();
reg int res=0;
while(!isdigit(ch)) ch=getchar();
while(isdigit(ch)) res=10*res+(ch^'0'),ch=getchar();
return res;
} inline void write(reg int x){
static char buf[32];
reg int p=-1;
if(x<0) x=-x,putchar('-');
if(!x) putchar('0');
else while(x) buf[++p]=(x%10)^'0',x/=10;
while(~p) putchar(buf[p--]);
return;
} const int MAXN=1e5+5;
const int MAXS=2e5+5; struct Event{
int x,y,id;
inline Event(reg int x=0,reg int y=0,reg int id=0):x(x),y(y),id(id){
return;
}
}; struct Link{
int val,id;
inline Link(reg int val=0,reg int id=0):val(val),id(id){
return;
}
}; int n; inline pair<int,int> solve(void){
n=read();
reg int sum=0;
vector<vector<int>> S(n+1);
vector<int> V;
for(reg int i=1;i<=n;++i){
reg int k=read();
sum+=k;
S[i].resize(k);
for(reg int j=0;j<k;++j)
S[i][j]=read(),V.push_back(S[i][j]);
}
sort(V.begin(),V.end()),V.erase(unique(V.begin(),V.end()),V.end());
for(reg int i=1;i<=n;++i)
for(int& x:S[i])
x=lower_bound(V.begin(),V.end(),x)-V.begin();
reg int m=V.size();
reg size_t B=sqrt(sum/16);
vector<int> Big,Sma;
for(int i=1;i<=n;++i)
if(S[i].size()>=B)
Big.push_back(i);
else
Sma.push_back(i);
vector<bool> vis(m);
vis.resize(m);
for(reg int i=0,siz=Big.size();i<siz;++i){
int u=Big[i];
for(int x:S[u])
vis[x]=true;
for(reg int j=1;j<=n;++j){
int v=j;
if(u!=v){
reg int cnt=0;
for(int x:S[v])
if(vis[x])
++cnt;
if(cnt>=2)
return make_pair(u,v);
}
}
for(int x:S[u])
vis[x]=false;
}
vector<Event> E;
for(reg int i=0,siz=Sma.size();i<siz;++i){
reg int u=Sma[i];
for(reg int j=0,siz=S[u].size();j<siz;++j)
for(reg int k=j+1;k<siz;++k)
E.push_back(Event(S[u][j],S[u][k],u));
}
vector<vector<Link>> G;
G.resize(m);
for(Event e:E)
if(e.x<e.y)
G[e.x].push_back(Link(e.y,e.id));
else
G[e.y].push_back(Link(e.x,e.id));
vector<int> from;
from.resize(m);
for(reg int i=0;i<m;++i){
for(Link L:G[i])
if(!from[L.val])
from[L.val]=L.id;
else
return make_pair(from[L.val],L.id);
for(Link L:G[i])
from[L.val]=0;
}
return make_pair(-1,-1);
} int main(void){
reg int t=read();
while(t--){
static pair<int,int> ans;
ans=solve();
if(ans.first==-1)
write(-1),putchar('\n');
else
write(ans.first),putchar(' '),write(ans.second),putchar('\n');
}
flush();
return 0;
}

「题解」CF1468M Similar Sets的更多相关文章

  1. 「题解」「美团 CodeM 资格赛」跳格子

    目录 「题解」「美团 CodeM 资格赛」跳格子 题目描述 考场思路 思路分析及正解代码 「题解」「美团 CodeM 资格赛」跳格子 今天真的考自闭了... \(T1\) 花了 \(2h\) 都没有搞 ...

  2. 「题解」「HNOI2013」切糕

    文章目录 「题解」「HNOI2013」切糕 题目描述 思路分析及代码 题目分析 题解及代码 「题解」「HNOI2013」切糕 题目描述 点这里 思路分析及代码 题目分析 这道题的题目可以说得上是史上最 ...

  3. 「题解」JOIOI 王国

    「题解」JOIOI 王国 题目描述 考场思考 正解 题目描述 点这里 考场思考 因为时间不太够了,直接一上来就着手暴力.但是本人太菜,居然暴力爆 000 ,然后当场自闭- 一气之下,发现对 60pts ...

  4. 「题解」:[loj2763][JOI2013]现代豪宅

    问题 A: 现代豪宅 时间限制: 1 Sec  内存限制: 256 MB 题面 题目描述 (题目译自 $JOI 2013 Final T3$「現代的な屋敷」) 你在某个很大的豪宅里迷路了.这个豪宅由东 ...

  5. 「题解」:$Six$

    问题 A: Six 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 来写一篇正经的题解. 每一个数对于答案的贡献与数本身无关,只与它包含了哪几个质因数有关. 所以考虑二 ...

  6. 「题解」:$Smooth$

    问题 A: Smooth 时间限制: 1 Sec  内存限制: 512 MB 题面 题面谢绝公开. 题解 维护一个队列,开15个指针,对应前15个素数. 对于每一次添加数字,暴扫15个指针,将指针对应 ...

  7. 「题解」:Kill

    问题 A: Kill 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 80%算法 赛时并没有想到正解,而是选择了另一种正确性较对的贪心验证. 对于每一个怪,我们定义它的 ...

  8. 「题解」:y

    问题 B: y 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 考虑双向搜索. 定义$cal_{i,j,k}$表示当前已经搜索状态中是否存在长度为i,终点为j,搜索过边 ...

  9. 「题解」:x

    问题 A: x 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 题解 赛时想到了正解并且对拍了很久.对拍没挂,但是评测姬表示我w0了……一脸懵逼. 不难证明,如果对于两个数字 ...

随机推荐

  1. 线程操作与进程挂起(Windows核心编程)

    0x01 线程挂起与切换 对于挂起进程,挂起线程则比较简单,利用 ResumeThread 与 SuspendThread 即可,当线挂起时线程用户状态下的一切操作都会暂停 #include < ...

  2. office 2007

    Microsoft office2007免费版几乎包括了Word2007.Excel2007.PowerPoint.Outlook.Publisher.OneNote.Groove.Access.In ...

  3. Win10安装Ubuntu子系统(WSL)

    一:设置子系统环境 关闭所有运行的程序,打开 控制面板→卸载程序→启用或关闭windows功能→勾选上适用于Linux的windows子系统 ,然后确定,完成会提示重启电脑,确定重启,等重启电脑后在操 ...

  4. spring源码解析之属性编辑器propertyEditor

    异常信息造成此异常的原因bean配置文件调用代码特别说明:异常解决注册springt自带的属性编辑器 CustomDateEditor控制台输出属性编辑器是何时并如何被注册到spring容器中的?查看 ...

  5. Linux 面试总结

    1. 统计指定目录的文件个数: find / -type f | wc –l 2.Linux 下常用目录 /boot:这个目录是用来存放与系统启动相关的文件/root:root用户的家目录/bin:存 ...

  6. 【转载】geany linux python编译器 开源

    http://www.dekiru.cn/?p=1491 Geany 不好用,建议用一些好用的编辑器或ide Subliem Text 或 VS code Pycharm等. 设置运行环境 菜单栏–生 ...

  7. CentOS6.7系统文本安装-2020

    CentOS6.7系统文本安装 [日期:2016-01-30] 来源:Linux社区  作者:endmoon [字体:大 中 小]   一.选择虚拟机软件 1)VMware Workstation   ...

  8. 《我常用的股票投资工具与网站》v2.0

    <我常用的股票投资工具与网站>v2.0 王大海 职业投资,抽空做一点分享. 661 人赞同了该文章 "少年你好,想不到你竟有如此因缘际会看到这里.我看你骨骼精奇,定是万中无一的交 ...

  9. Docker Swarm(八)滚动更新、回滚服务

    滚动更新.回滚服务 默认情况下, swarm一次只更新一个副本,并且两个副本之间没有等待时间,我们可以通过: # 定义并行更新的副本数量--update-parallelism# 定义滚动更新的时间间 ...

  10. Linux软件安装管理之——dpkg与apt-*详解 apt命令(dpkg和apt代替rpm)

    apt list *python* Nosee123关注赞赏支持   Linux软件安装管理之--dpkg与apt-*详解 [Linux软件安装管理系列]- - 传送门: - -<Linux软件 ...