AI芯片加速图像识别

AI chip accelerates image recognition

法国研究机构CEA-Leti和LIST在2020年VLSI研讨会上展示了一种概念验证芯片,该芯片集成了低功耗物联网节点和人工智能加速器,并展示了超快的唤醒时间,峰值至空闲功耗降低了1500倍。对于机器学习任务,该节点每秒可提供高达1.3tera次运算/瓦特(TOPS/W)或36个gop。

这款名为SamurAI的芯片在占用检测系统中进行了测试,该系统包括PIR传感器、224×224像素黑白摄像头、FeRAM和低功率收音机。日均系统功耗为105µW,SamurAI消耗了预算的26%。该系统使用PIR传感器,每天占用房间8小时,间隔5s,摄像机每秒1帧,收音机10x。

SamurAI System

amurAI使用了两个片上子系统:一个低功耗的无时钟事件驱动唤醒控制器,可以在207ns内启动;一个按需子系统包括一个具有深度睡眠模式的RISC-V CPU加上PNeuro-AI加速器和密码加速器。

这种双子系统方案可以实现15000倍的峰值与空闲功率比。下图显示了不同模式下的功耗;空闲模式仅消耗6.4µW。在CPU和AI加速器运行的情况下,功耗为96 mW。

该芯片基于STMicro的28nm全耗尽绝缘体上硅(FD-SOI)工艺,功率图在没有体偏压的情况下给出。硅的尺寸为4.5mm2,具有6个可切换的功率域。

SamurAI power consumption measurements by power modes (the modes are L-R: idle, wake-up controller (WuC) only, wake-up controller and wake-up radio (WuR), wake-up controller and peripherals, and CPU running

AI accelerator

该芯片的人工智能加速器,这个团队称之为PNeuro的设计,是一种单指令、多数据(SIMD)可编程加速器。它由2个32x 8位处理单元组成,带有264kB多银行SRAM。它可以执行多达64个乘法累加(mac)每个周期。PNeuro块在2.8gops/0.48V时可以达到1.3tops/W,对于8位全连接的神经网络层,它可以在0.9V下达到36个GOPS。             

与使用控制器RISC-V内核进行ML计算相比,使用PNeuro加速器使系统的总功耗降低了2.3倍。

SamurAI’s two-cluster PNeuro accelerator with 64 processing elements total 

PNeuro’s energy efficiency is 1.3 TOPS/W maximum and performance is 36 GOPS maximum

该设计是为物联网应用而设计的,在长时间的“睡眠”之间需要零星的计算能力。与其连接到云端,如果节点本身能够处理AI工作负载,则通常可以更快地完成,并且由于数据不在系统外部共享,因此不会涉及隐私。这可能包括使用摄像机或其他传感器进行人员检测或场景识别等应用。

AI芯片加速图像识别的更多相关文章

  1. 应用AI芯片加速 Hadoop 3.0 纠删码的计算性能

    本文由云+社区发表 做为大数据生态系统中最重要的底层存储文件系统HDFS,为了保证系统的可靠性,HDFS通过多副本的冗余来防止数据的丢失.通常,HDFS中每一份数据都设置两个副本,这也使得存储利用率仅 ...

  2. TensorRT加速 ——NVIDIA终端AI芯片加速用,可以直接利用caffe或TensorFlow生成的模型来predict(inference)

    官网:https://developer.nvidia.com/tensorrt 作用:NVIDIA TensorRT™ is a high-performance deep learning inf ...

  3. 深度 | AI芯片之智能边缘计算的崛起——实时语言翻译、图像识别、AI视频监控、无人车这些都需要终端具有较强的计算能力,从而AI芯片发展起来是必然,同时5G网络也是必然

    from:https://36kr.com/p/5103044.html 到2020年,大多数先进的ML袖珍电脑(你仍称之为手机)将有能力执行一整套任务.个人助理将变的更加智能,它是打造这种功能的切入 ...

  4. Nvidia和Google的AI芯片战火蔓延至边缘端

    AI 的热潮还在持续,AI 的战火自然也在升级.英伟达作为这一波 AI 浪潮中最受关注的公司之一,在很大程度上影响着 AI 的战局.上周在美国举行的 GTC 2019 上,黄仁勋大篇幅介绍了英伟达在 ...

  5. 深度 | AI芯片终极之战

    深度 | AI芯片终极之战 https://mp.weixin.qq.com/s?__biz=MzA4MTQ4NjQzMw==&mid=2652712307&idx=1&sn= ...

  6. 人工智能AI芯片与Maker创意接轨(下)

    继「人工智能AI芯片与Maker创意接轨」的(上)篇中,认识了人工智能.深度学习,以及深度学习技术的应用,以及(中)篇对市面上AI芯片的类型及解决方案现况做了完整剖析后,系列文到了最后一篇,将带领各位 ...

  7. 人工智能AI芯片与Maker创意接轨 (中)

    在人工智能AI芯片与Maker创意接轨(上)这篇文章中,介绍人工智能与深度学习,以及深度学习技术的应用,了解内部真实的作业原理,让我们能够跟上这波AI新浪潮.系列文来到了中篇,将详细介绍目前市面上的各 ...

  8. 人工智能AI芯片与Maker创意接轨 (上)

    近几年来人工智能(Artificial Intelligence, AI)喴的震天价响,吃也要AI,穿也要AI,连上个厕所也要来个AI智能健康分析,生活周遭食衣住行育乐几乎无处不AI,彷佛已经来到科幻 ...

  9. 一文看懂AI芯片竞争五大维度

    下一波大趋势和大红利从互联网+让位于人工智能+,已成业界共识.在AI的数据.算法和芯片之三剑客中,考虑到AI算法开源的发展趋势,数据与芯片将占据越来越重要的地位,而作为AI发展支柱的芯片更是AI业的竞 ...

随机推荐

  1. hdu3746 KMP的next数组应用,求项链首尾项链循环

    题意:       给你一个项链,问你最少加多少个珠子能满足整个项链是一个循环的项链(首尾相连) 思路:      KMP的简单应用只要了解next数组的意义就好说了,下面总结下  next在循环方面 ...

  2. POJ 2516 基础费用流

    题意       有n个顾客,m个供应商,k种货物,给你顾客对于每种货物的要求个数,和供应商对于每种货物的现有量,以及供应每种货物的时候供应商和顾客之间的运输单价,问你满足所有顾客的前提下的最小运输费 ...

  3. 网络基础概念(IP、MAC、网关、子网掩码)

    目录 IP地址 MAC地址 网关 子网掩码 反子网掩码 子网掩码 子网划分一: 子网划分二: 子网汇聚 广播域 冲突域 CSMA/CD IP地址 ip地址是用于标识网络中每台设备的标识.目前 IPV4 ...

  4. 使用SSH端口做端口转发以及反向隧道

    目录 SSH做本地端口转发 SSH做反向隧道(远程端口转发) 用autossh建立稳定隧道 SSH开启端口转发需要修改 /etc/ssh/sshd_config配置文件,将 GatewayPorts修 ...

  5. 分布式ID

    需求 全局唯一 高性能 高可用 简单易用 UUID 优点: 唯一 不依赖于任何第三方服务 缺点: 是字符串类型而非数字,不满足数字ID的需求 字符串太长了,DB查询效率受影响 数据库自增ID 如果使用 ...

  6. Java常用类详解

    目录 1. String类 1.1 String的特性 1.2 String字面量赋值的内存理解 1.3 String new方式赋值的内存理解 1.4 String 拼接字面量和变量的方式赋值 1. ...

  7. 【BUAA软工】技术规格说明书

    项目 内容 班级:北航2020春软件工程 博客园班级博客 作业:技术规格说明书 技术规格说明书 宏观技术 后端 WEB服务器 WEB服务器选取的是Springboot,作为当下Java语言最主流的WE ...

  8. 三分钟了解B2B CRM系统的特点

    最近很多朋友想了解什么是B2B CRM系统,说到这里小Z先来给大家说说什么是B2B--B2B原本写作B to B,是Business-to-Business的缩写.正常来说就是企业与企业之间的生意往来 ...

  9. [Scala] 面向对象

    类定义 当属性是private时,scala会自动为其生成get和set方法 只希望scala生成get,不生成set,可定义为常量 不生成get和set方法,使用private[this]关键字 1 ...

  10. [ML] 高德软件的路径规划原理

    路径规划 Dijkstra s:起点:S:已知到起点最短路径的点:U:未知到起点最短路径的点 Step 1:S中只有起点s,从U中找出路径最短的 Step 2:更新U中的顶点和顶点对应的路径 重复St ...