向有液体的多孔介质上施加应力,应力一部分分布到骨架上,一部分分布到孔隙流体上。骨架上的应力会导致变形,所以被称为 ”有效应力“。这里考虑拉伸应力为正,有效应力原理写为

\[\sigma_{ij}=\sigma'_{ij}-p\delta_{ij}
\]

被流体饱和多孔介质的应力-应变关系与无孔介质的应力-应变关系本质上相同,可以表达为

\[\varepsilon_{ij}=\frac{1+v}E\sigma'_{ij}-\frac vE\sigma'_{kk}\delta_{ij}
\]

再根据那几个经典的变来变去的关系

\[\begin{matrix}
\displaystyle K=\frac E{3(1-2v)},G=\frac E{2(1+v)} \\[2ex]
\displaystyle\sigma'_{ij}=\left(K-\frac{2G}3\right)\varepsilon\delta_{ij}+2G\varepsilon_{ij}
\end{matrix}
\]

式中 \(\varepsilon=\varepsilon_{kk}\) 是体积应变。一通重写,就变成了

\[\begin{matrix}
\displaystyle\varepsilon_{ij}=\frac1{2G}\left(\sigma_{ij}-\frac v{1+v}\sigma_{kk}\delta_{ij}\right)+\frac1{3K}p\delta_{ij} \\[2ex]
\displaystyle\sigma_{ij}=\left(K-\frac{2G}3\right)\varepsilon\delta_{ij}+2G\varepsilon_{ij}-p\delta_{ij}
\end{matrix}
\]

在 Evans et al. (2017) 的 3.4 节中,方程 \((1)\)、\((2)\) 都好懂,但凭空出现了一个方程 \((3)\),给我一下子整不会了

\[\sigma_{ij}=\frac Y{1+v}\left(\frac v{1-2v}\delta_{ij}\varepsilon_{kk}+\varepsilon_{ij}\right)-p\delta_{ij}
\]

他的 \(Y\) 是杨氏模量。其实你代入那几个模量 \(E\)、\(K\)、\(G\) 的关系变换一下,就会发现它正是从上面的本构方程变形来的!

\[\begin{aligned}
\sigma_{ij}&=\left(K-\frac{2G}3\right)\varepsilon\delta_{ij}+2G\varepsilon_{ij}-p\delta_{ij} \\[1ex]
&=\left(\frac E{3(1-2v)}-\frac E{3(1+v)}\right)\varepsilon\delta_{ij}+\frac E{1+v}\varepsilon_{ij}-p\delta_{ij} \\[1ex]
&=\frac E{1+v}\left(\frac v{1-2v}\delta_{ij}\varepsilon_{kk}+\varepsilon_{ij}\right)-p\delta_{ij}
\end{aligned}
\]

这个式子就描述了,奶皮孔隙压力、竖直应变、水平应力、收缩之间的各种关系。

此处应有掌声!


有杨氏模量为 \(E\)、泊松比为 \(v\) 的材料制成厚度为 \(t\)、宽度为 \(W\)、长度为 \(L~(t\ll W\ll L)\) 的各向同性的弹性薄膜。膜片在平面内受到拉伸应变 \(\gamma\),产生皱纹。假设面积 \(WL\) 的薄膜的面外位移是 \(\zeta(x,y)\)。为计算皱纹波长和振幅,考虑弯曲和拉伸的能量,并用拉格朗日乘子考虑几何约束条件。此时目标函数可写为

\[u=U_B+U_S+L\tag1
\]

式中 \(U_B=1/2\int B\left(\partial_y^2\zeta\right)^2\mathrm dA\) 是变形产生的弯曲能,弯曲刚度 \(B=Et^3/\left[12\left(1-v^2\right)\right]\)。拉伸能 \(U_S=1/2\int T(x)(\partial_x\zeta)^2\mathrm dA\),\(T(x)\) 是张力。由于片材在较小的压应力作用下沿 \(y\) 方向起皱,满足不可延伸的条件。

\[\begin{matrix}
\displaystyle\int_0^L\left[\frac12(\partial_y\zeta)^2-\frac{\Delta(x)}W\right]\mathrm dy=0 \\[2ex]
\displaystyle L=\int b(x)\left[\frac12(\partial_y\zeta)^2-\frac{\Delta(x)}W\right]\mathrm dA
\end{matrix}\tag2
\]

式中 \(b(x)\) 是拉格朗日乘子,\(\Delta(x)\) 是横向的压缩量。考察欧拉-拉格朗日方程第一变分 \(\delta U/\delta\zeta=0\),得到

\[B\partial_y^4\zeta-T(x)\partial_x^2\zeta+b(x)\partial_y^2\zeta=0\tag3
\]

Cerda 和 Mahadeven 在论文末尾指出,通过对 Foppl-von Karman 方程的奇异摄动分析形式化就可以得出 \((3)\) 式,遗憾的是,我根本看不懂他俩在说什么。但观众们可能也不会发现我的这个吐槽,所以没关系,我们继续往下吧。

在本例中, \(T(x)\sim Eh\gamma\) 是常数,\(\Delta(x)\sin vW\gamma\) 是常数,\(b(x)\) 也是常数。

皱纹是周期的,\(\zeta(x,y)=\zeta(x,y+2\pi/k_n)\),\(k_n=2\pi n/W\),\(n\) 是皱纹条数。往上面 \((3)\) 里代入一个形式为的周期解 \(\zeta=\sum_n\mathrm e^{ik_ny}X_n(x)\),得到了一个施图姆-刘维尔问题 (Sturm-Liouville-like problem)

\[\frac{\mathrm d^2X_n}{\mathrm dx^2}+\omega_n^2X_n=0,X_n(0)=X_n(L)=0\tag4
\]

式中 \(\omega_n^2=(bk_n^2-Bk_n^4)/T\)。

\((4)\) 的解是 \(X_n=A_n\sin\omega_nx\),\(\omega_n=m\pi/L\)。该解在 \(m=1\) 时弯曲能最小,令 \(\omega_n=\pi/L\),则 \(b_n(k_n)=\dfrac{\pi^2T}{L^2k_n^2}+Bk_n^2\),\(\zeta=A_n\cos(k_ny+\phi_n)\sin\pi x/L\)。代入 \((2)\) 有 \(A_n^2k_n^2W/8\approx\Delta\)。一通重写有

\[u=Bk_n^2\Delta L+\pi^2 T\Delta/k_n^2L
\]

此时,波长 \(\lambda=2\pi/k\) 以及振幅 \(A\) 终于可以通过最小化 \(u\) 求出!

\[\begin{matrix}
\displaystyle\lambda=2\sqrt\pi\left(\frac BT\right)^{1/4}L^{1/2} \\[2ex]
\displaystyle A=\frac{\sqrt2}\pi\left(\frac\Delta W\right)^{1/2}\lambda
\end{matrix}
\]

例如对于拉伸的薄膜,就有

\[\begin{matrix}
\displaystyle\lambda=\frac{(2\pi Lt)^{1/2}}{\left[3\left(1-v^2\right)\gamma\right]^{1/4}} \\[3ex]
\displaystyle A=\cfrac{(vLt)^{1/2}}{\left[\cfrac{16\gamma}{3\pi\left(1-v^2\right)}\right]^{1/4}}
\end{matrix}
\]

但总之有

\[\begin{matrix}
\displaystyle\lambda\sim\left(\frac BK\right)^{1/4} \\[2ex]
\displaystyle A\sim\left(\frac\Delta W\right)^{1/2}\lambda \\[2ex]
\displaystyle B=\frac{Et^3}{12\left(1-v^2\right)}
\end{matrix}
\]

我是谁,我在哪,我在干什么?

流体饱和多孔介质的本构关系 + Föppl-von Kármán 方程的更多相关文章

  1. FLUENT多孔介质数值模拟设置【转载】

    转载自:http://zhengjun0228.blog.163.com/blog/static/71377014200971895419613/ 多孔介质条件 多孔介质模型可以应用于很多问题,如通过 ...

  2. 如何设置fvOptions【翻译】

    翻译自:CFD-online 帖子地址:http://www.cfd-online.com/Forums/openfoam-pre-processing/121763-how-set-fvoption ...

  3. HMS Core 3D流体仿真技术,打造移动端PC级流体动效

    移动设备硬件的高速发展,让游戏行业发生翻天覆地的变化,许多酷炫的游戏效果不再局限于电脑端,玩家在移动端就能享受到场景更逼真.画质更清晰.体验更流畅的游戏服务.但由于移动设备算力不足,为了实现真实感的水 ...

  4. abaqus二次开发概述

    说明 abaqus二次开发概述 导语 用户子程序特点 abaqus用户程序接口与调用方式 abaqus用户子程序分类 常用用户子程序介绍 Refence 说明 本系列文章本人基本没有原创贡献,都是在学 ...

  5. 【小白的CFD之旅】11 敲门实例【续】

    主要内容: 接上文[小白的CFD之旅]10 敲门实例 2.4 Materials设置2.5 Cell Zone Conditions2.6 Boundary Conditons2.7 Dynamic ...

  6. CFD计算

    47 求解器为flunet5/6在设置边界条件时,specify boundary types下的types中有三项关于interior,interface,internal设置,在什么情况下设置相应 ...

  7. 【CFD之道】2017年原创文章汇总

    1 Fluent案例(21篇) [Fluent案例]01 空气流经障碍物 [Fluent案例]02:Tesla阀 [Fluent案例]03:RAE2822翼型外流场计算 [Fluent案例]04:多孔 ...

  8. Fluent经典问题答疑

    原文链接1 原文链接28 什么叫边界条件?有何物理意义?它与初始条件有什么关系? 边界条件与初始条件是控制方程有确定解的前提. 边界条件是在求解区域的边界上所求解的变量或其导数随时间和地点的变化规律. ...

  9. 扩散(diffusion)和弥散(dispersion)有什么区别

    作者:谢易正链接:https://www.zhihu.com/question/23914350/answer/177359196来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注 ...

  10. ANSYS热分析简介1

    目录 1. ANSYS热分析简介 1.1 传导 1.2 热载荷分类 1.2.1 载荷施加 1.3 热分析分类 1.3.1 稳态热分析 1.3.2 瞬态热分析 1.3.3 非线性分析综述 2. 热分析单 ...

随机推荐

  1. 实验9.单臂路由实现Vlan互通实验

    # 单臂路由实现Vlan互通实验 本实验用于测试单臂路由方式实现Vlan路由. 实验组 实验过程 SW int g0/0/1 port link-type access port default vl ...

  2. 实验2.ARP实验

    # 实验2.ARP实验 本实验用于验证arp以及arp表,arp缓存的使用,测试ping包时arp表的更新机制. 实验组 PC1 10.68.57.10 255.255.255.0 00-00-00- ...

  3. .NET Core WebAPI项目部署iis后Swagger 404问题解决

    .NET Core WebAPI项目部署iis后Swagger 404问题解决 前言 之前做了一个WebAPI的项目,我在文章中写到的是Docker方式部署,然后考虑到很多初学者用的是iis,下面讲解 ...

  4. 高通SOC启动流程

    背景 开始接手高通开发的有关工作,为了调试底层驱动,因此有必要了解高通平台上电启动的流程是怎么样的. 以 MSM8953 为例子. MSM:mobile station modems,移动基带处理器, ...

  5. 网络OSI七层模型及各层作用 tcp-ip

    背景 虽然说以前学习计算机网络的时候,学过了,但为了更好地学习一些物联网协议(MQTT.CoAP.LWM2M.OPC),需要重新复习一下. OSI七层模型 七层模型,亦称OSI(Open System ...

  6. GUI测试还能这么玩(Page Code Gen + Data Gen + Headless)

    标签(空格分隔): GUI测试还能这么玩(Page Code Gen + Data Gen + Headless) 页面对象自动生成 在前面的文章中,我已经介绍过页面对象(Page Object)模型 ...

  7. P3731 题解

    简要题意是找到一条边连接使得最大团大小增加. 在补图上最大团等于最大独立集. 所以问题转化为删掉一条边使得最大独立集增加,又因为团不超过两个,所以原图是二分图,也就是使得最大匹配减少. 考虑什么样的匹 ...

  8. vue3 'alex' is defined but never used

    解决方法 在package.json中的rules下加入 "no-unused-vars":"off" 即可

  9. 基于Java+SpringBoot+Vue宠物咖啡馆平台设计和实现

    \n文末获取源码联系 感兴趣的可以先收藏起来,大家在毕设选题,项目以及论文编写等相关问题都可以给我加好友咨询 系统介绍: 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成 ...

  10. ComfyUI进阶:Comfyroll插件 (三)

    前言: 学习ComfyUI是一场持久战,而Comfyroll 是一款功能强大的自定义节点集合,专为 ComfyUI 用户打造,旨在提供更加丰富和专业的图像生成与编辑工具.借助这些节点,用户可以在静态图 ...