商业人工智能和大型语言模型 (LLM) 有一个很大的缺点:隐私。在处理敏感数据或专有数据时,我们无法从这些工具中获益。因此,我们需要了解如何在本地运行私人 LLM。开源模型提供了一种解决方案,但它们也有自己的挑战和优势。

设定期望值

开源软件种类繁多,有数以千计的模型可供选择,从 Meta 等大型组织提供的模型到个人爱好者开发的模型,各有不同。然而,运行这些模型也面临着一系列挑战:

  • 它们可能需要强大的硬件,须拥有足够的内存和一个 GPU
  • 尽管开源模型在不断改进,但它们的功能通常仍无法与 ChatGPT 等更完善的产品相提并论,因为 ChatGPT 得益于庞大的工程师团队的支持
  • 并非所有模型都能用于商业用途。

不过,正如同谷歌的一份文件所指出的,开源和闭源模型之间的差距正在缩小。

Hugging Face 和 Transformers

Hugging Face 相当于机器学习和人工智能的 Docker Hub,提供了大量开源模型。并且,Hugging Face 会定期对模型进行基准测试,并提供排行榜,帮助用户选择最佳模型。

Hugging Face 还提供了一个 Python 库 transformers,可以简化本地运行一个 LLM 的过程。下面的示例使用该库运行了一个较旧的 GPT-2 microsoft/DialoGPT-medium 模型。第一次运行时,Transformers 会下载模型,你可以与它进行五次交互。该脚本还需要安装 PyTorch。

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium", padding_side='left')
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium")
# source: https://huggingface.co/microsoft/DialoGPT-medium
# Let's chat for 5 lines
for step in range(5):
# encode the new user input, add the eos_token and return a tensor in Pytorch
new_user_input_ids = tokenizer.encode(input(">> User:") + tokenizer.eos_token, return_tensors='pt')
# append the new user input tokens to the chat history
bot_input_ids = torch.cat([chat_history_ids, new_user_input_ids], dim=-1) if step > 0 else new_user_input_ids
# generated a response while limiting the total chat history to 1000 tokens,
chat_history_ids = model.generate(bot_input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id)
# pretty print last output tokens from bot
print("DialoGPT: {}".format(tokenizer.decode(chat_history_ids[:, bot_input_ids.shape[-1]:][0], skip_special_tokens=True)))

Transformers 优势

  • 自动下载模型
  • 提供代码片段
  • 理想的实验和学习工具

Transformers 劣势

  • 需要对 ML 和 NLP 有扎实的了解
  • 需要具备编码和配置技能

LangChain

我们在本地运行 LLM 的另一种方法是使用 LangChain。LangChain 是一个用于构建人工智能应用程序的 Python 框架。它提供抽象和中间件,以便在其支持的模型之上开发人工智能应用程序。例如,下面的代码向 microsoft/DialoGPT-medium 模型提出了一个问题:

from langchain.llms.huggingface_pipeline import HuggingFacePipeline
hf = HuggingFacePipeline.from_model_id(
model_id="microsoft/DialoGPT-medium", task="text-generation", pipeline_kwargs={"max_new_tokens": 200, "pad_token_id": 50256},
)
from langchain.prompts import PromptTemplate
template = """Question: {question}
Answer: Let's think step by step."""
prompt = PromptTemplate.from_template(template)
chain = prompt | hf
question = "What is electroencephalography?"
print(chain.invoke({"question": question}))

LangChain 优势

  • 更便捷的模型管理
  • 实用的 AI 应用程序开发工具

**LangChain 劣势

**

  • 速度有限,与 Transformers 相同
  • 仍须编写应用程序的逻辑代码或创建合适的用户界面

Llama.cpp

Llama.cpp 是一个基于 C 和 C++ 的 LLM 推理引擎,针对苹果芯片进行了优化,可运行 Meta 的 Llama2 模型。

一旦我们克隆了资源库并构建了项目,我们就可以使用 Llama.cpp 运行一个模型:

$ ./main -m /path/to/model-file.gguf -p "Hi there!"

Llama.cpp 优势

  • 性能高于基于 Python 的解决方案
  • 在适中的硬件上支持 Llama 7B 等大型模型
  • 提供绑定,以便在通过 Llama.cpp 运行推理的同时使用其他语言构建 AI 应用程序

Llama.cpp 劣势

  • 模型支持有限
  • 需要构建工具

Llamafile

Llamafile 由 Mozilla 开发,为运行 LLM 提供了一个用户友好的替代方案。Llamafile 以其可移植性和创建单文件可执行文件的能力而著称。

下载 llamafile 和任何 GGUF 格式的模型后,我们就可以用以下命令启动本地浏览器会话:

$ ./llamafile -m /path/to/model.gguf

Llamafile 优势

  • 与 Llama.cpp 相同的速度优势
  • 可以创建嵌入模型的单一可执行文件

Llamafile 劣势

  • 该项目仍处于早期阶段
  • 不支持所有模型,只支持 Llama.cpp 支持的模型

Ollama

Ollama 是 Llama.cpp 和 Llamafile 的替代品,对用户更加友好。你可以下载一个可执行文件,在你的机器上安装一个服务。安装完成后,打开终端并运行:

$ ollama run llama2

Ollama 优势

  • 易于安装和使用
  • 可以运行 Ilama 和 vicuña 模型
  • 运行速度极快

Ollama 劣势

  • 提供有限的模型库
  • 自行管理模型,不能重复使用自己的模型
  • 无法调整运行 LLM 的选项
  • 暂无 Windows 版本

GPT4ALL

GPT4ALL 是一款易于使用的桌面应用程序,具有直观的 GUI。它支持本地模型运行,并可通过 API 密钥连接 OpenAI。它的突出特点是能够处理本地文档的上下文,确保隐私。

GPT4ALL 优势

  • 具有友好UI的替代方案
  • 支持各种策划模型

GPT4ALL 劣势

  • 机型选择有限
  • 部分机型有商业用途限制

结论

选择合适的工具在本地运行 LLM 取决于您的需求和专业知识。从 GPT4ALL 等用户友好型应用程序,到 Llama.cpp 等技术性更强的选项,以及基于 Python 的解决方案,可提供多种选择。可见开源模式正在迎头赶上,提供了对数据和隐私的更多控制。随着这些模型的发展,它们或有望与 ChatGPT 等产品竞争。

在本地运行 LLMs 的 6 种方法的更多相关文章

  1. 在本地运行Kubernetes的3种主流方式

    作者简介 Chris Tozzi,曾担任记者和Linux管理员.对开源技术.敏捷基础架构以及网络问题兴趣浓厚.目前担任高级内容编辑,并且是Fixate IO的DevOps分析师. 原文链接: http ...

  2. CentOS7创建本地YUM源的三种方法

    这篇文章主要介绍了CentOS7创建本地YUM源的三种方法,本文讲解了使用CentOS光盘作为本地yum源.如何为CentOS创建公共镜像.创建完全自定义的本地源等内容,需要的朋友可以参考下     ...

  3. mac学习Python第一天:安装、软件说明、运行python的三种方法

    一.Python安装 从Python官网下载Python 3.x的安装程序,下载后双击运行并安装即可: Python有两个版本,一个是2.x版,一个是3.x版,这两个版本是不兼容的. MAC 系统一般 ...

  4. openstack中运行定时任务的两种方法及源代码分析

    启动一个进程,如要想要这个进程的某个方法定时得进行执行的话,在openstack有两种方式: 一种是通过继承 periodic_task.PeriodicTasks,另一种是使用loopingcall ...

  5. Linux:检查当前运行级别的五种方法

    运行级就是Linux操作系统当前正在运行的功能级别.存在七个运行级别,编号从0到6.系统可以引导到任何给定的运行级别.运行级别由数字标识. 每个运行级别指定不同的系统配置,并允许访问不同的进程组合.默 ...

  6. JS本地保存数据的几种方法

    1.Cookie 这个恐怕是最常见也是用得最多的技术了,也是比较古老的技术了.COOKIE优点很多,使用起来很方便 但它的缺点也很多: 比如跨域访问问题:无法保存太大的数据(最大仅为4KB):本地保存 ...

  7. 77.JS本地保存数据的几种方法

    1.Cookie 这个恐怕是最常见也是用得最多的技术了,也是比较古老的技术了.COOKIE优点很多,使用起来很方便 但它的缺点也很多: 比如跨域访问问题:无法保存太大的数据(最大仅为4KB):本地保存 ...

  8. IDEA引入本地jar包的几种方法

    有时候,项目需要引入一些第三方的依赖,这时候,就需要导入这些jar包.以下分享两种方式: 方式一.使用IDEA程序引入jar包 1.首先,点他! 2.然后,点他! 3.再然后,点他! 4.最后,在这里 ...

  9. Mac运行exe的几种方法,欢迎补充!

    1. 用wine直接运行exe.安装wine后有个放exe的文件夹,双击后会自动包装运行.看起来挺方便的,就怕暂用资源比较大: http://www.youtube.com/watch?v=eYISV ...

  10. VC 获 取 当前程序运行路径的几种方法

    1.使用APi函数GetModuleFileName char path[MAX_PATH]; GetModuleFileName(NULL, path, MAX_PATH);        //获取 ...

随机推荐

  1. [转帖]Nginx(3):上手Nginx,从配置文件开始

    https://cloud.tencent.com/developer/article/1886147?areaSource=&traceId=   其实吧,我配置 tcp 负载均衡的时候也就 ...

  2. Docker 23.0.0 简单学习与使用

    前言 Docker 从2013年火起来到现在才第十个年头. 现在已经被Google的K8S打的没有任何还手之力. 随着K8S放弃支持docker,仅支持containerd的方式. 直接导致docke ...

  3. ELK搭建简单说明

    ELK搭建简单说明 简单说明 周天陪孩子学习,自己简单研究了下如何处理 不是很系统,仅是能够展示部分文件的日志. 需要有很多坑需要进行填充. 搭建模式 自己采取rpm包方式进行搭建 183 机器上面安 ...

  4. 记录一次RPC服务有损上线的分析过程

    1. 问题背景 某应用在启动完提供JSF服务后,短时间内出现了大量的空指针异常. 分析日志,发现是服务依赖的藏经阁配置数据未加载完成导致.即所谓的有损上线或者是直接发布,当应用启动时,service还 ...

  5. echarts显示地图

    <template> <div class="managingPatientSize"> <div id="china-map"& ...

  6. hadoop实践02---eclipse操作hdfs的api上传文件

    1.eclipse中编写代码后双击main方法--->Run as ---> java application ,然后指定的文件 就会提交到hdfs中. 2.查看文件:http://192 ...

  7. 离线生成双语字幕,一键生成中英双语字幕,基于AI大模型,ModelScope

    制作双语字幕的方案网上有很多,林林总总,不一而足.制作双语字幕的原理也极其简单,无非就是人声背景音分离.语音转文字.文字翻译,最后就是字幕文件的合并,但美中不足之处这些环节中需要接口api的参与,比如 ...

  8. Centos8 配置IP地址与阿里YUM源

    Centos8 系统中无法找到network.service网络服务,默认已经被nmcli替换了,所以修改方式略微变化,在/etc/sysconfig/network-scripts/里也看不到任何脚 ...

  9. Intel(R) Ethernet Controller X710驱动升级

    环境 CentOS Linux release 7.9.2009 (Core) 升级 先查看原驱动版本 [root@xcdcs ~]# lspci |grep net 01:00.0 Ethernet ...

  10. Windows 11 ISO原版镜像文件下载(2024年01月)

    Windows 11 (business editions), version 23H2 (x64) - DVD (Chinese-Simplified) 链接:https://pan.baidu.c ...