双摆杆运动模型。初始条件的微小差异,会导致千差万别的运动现象,这是混沌理论重要体现。主要考虑初始条件有两摆杆长度、质量、初始摆杆角度、重力加速度。

input:

% 参数定义
L1 = 1; % 第一根摆长
L2 = 0.5; % 第二根摆长
m1 = 1; % 第一根摆质量
m2 = 0.5; % 第二根摆质量
g = 9.81; % 重力加速度 % 初始状态定义
theta1 = pi/6; % 第一根摆角度
theta2 = 0; % 第二根摆角度
dtheta1 = 0; % 第一根摆角速度
dtheta2 = 0; % 第二根摆角速度 % 动画绘制
tspan = [0 30]; % 时间跨度
y0 = [theta1 dtheta1 theta2 dtheta2]; % 初始状态向量
[t, y] = ode45(@(t,y) pendulum2(t, y, L1, L2, m1, m2, g), tspan, y0); % 解微分方程 x1 = L1*sin(y(:,1)); % 第一根摆x坐标
y1 = -L1*cos(y(:,1)); % 第一根摆y坐标
x2 = L1*sin(y(:,1)) + L2*sin(y(:,3)); % 第二根摆x坐标
y2 = -L1*cos(y(:,1)) - L2*cos(y(:,3)); % 第二根摆y坐标 set(gcf, 'renderer', 'painters');
axis equal; % x、y轴比例相等
axis([-1.5*(L1+L2) 1.5*(L1+L2) -1.5*(L1+L2) 1.5]); % 设置坐标轴范围
hold on; x1_trace = zeros(length(t), 1); % 第一个摆的摆顶端x坐标
y1_trace = zeros(length(t), 1); % 第一个摆的摆顶端y坐标
x2_trace = zeros(length(t), 1); % 第二个摆的摆顶端x坐标
y2_trace = zeros(length(t), 1); % 第二个摆的摆顶端y坐标 % 绘制双摆动画,同时画出摆顶端轨迹连线
for k = 1:length(t)-1
plot([0 x1(k) x2(k)], [0 y1(k) y2(k)], 'linewidth', 0.5); % 绘制双摆图形
plot(x2(1:k), y2(1:k), '.', 'color', [0.8 0.05 0.1], 'markersize', 10); % 绘制尾迹
x1_trace(k+1) = L1*sin(y(k+1,1));
y1_trace(k+1) = -L1*cos(y(k+1,1));
x2_trace(k+1) = x1_trace(k+1) + L2*sin(y(k+1,3));
y2_trace(k+1) = y1_trace(k+1) - L2*cos(y(k+1,3));
plot([x1_trace(k) x1_trace(k+1)], [y1_trace(k) y1_trace(k+1)], 'linewidth', 1, 'color', 'blue'); % 第一个摆的轨迹线
plot([x2_trace(k) x2_trace(k+1)], [y2_trace(k) y2_trace(k+1)], 'linewidth', 1, 'color', 'green'); % 第二个摆的轨迹线
drawnow; % 实时显示
end % 微分方程定义
function dydt = pendulum2(t, y, L1, L2, m1, m2, g)
dydt = zeros(4,1); % 向量拆分为各个分量
theta1 = y(1);
dtheta1 = y(2);
theta2 = y(3);
dtheta2 = y(4); % 运动方程
% 第一个摆的力
F1 = -m1*L1*dtheta1^2*sin(theta1) - m1*g*cos(theta1)*sin(theta1);
% 第二个摆的力
F2 = -m2*(L1*dtheta1^2*sin(theta1) + L2*dtheta2^2*sin(theta2)) - m2*g*cos(theta2)*sin(theta2);
% 坐标加速度
d2theta1 = (F1 + m1*g*sin(theta1)*cos(theta1) + F2*cos(theta1-theta2))/(m1*L1^2 + m2*L1^2 - m2*L1*L2*cos(theta1-theta2));
d2theta2 = (F2*cos(theta1-theta2) + (m1+m2)*g*sin(theta1) + L1*dtheta1^2*sin(theta1)*cos(theta1-theta2) - (m1+m2)*L2*dtheta2^2*sin(theta1-theta2))/(L2^2*m2 + (m1+m2)*L1^2 - 2*L1*L2*m2*cos(theta1-theta2)); dydt(1) = dtheta1; % 第一个摆角速度
dydt(2) = d2theta1; % 第一个摆角加速度
dydt(3) = dtheta2; % 第二个摆角速度
dydt(4) = d2theta2; % 第二个摆角加速度
end

output:

初始条件:L1 = 1;L2 = 0.5;m1 = 1;m2 = 0.5;theta1 = pi/6;theta2 = 0;dtheta1 = 0;dtheta2 = 0;

output:

初始条件:第二摆杆长度是第一摆杆的一半,其余变量也不同。

output:

初始条件:第一摆杆长度、质量等于第一摆杆的,初始摆角不同。

【matlab混沌理论】1.4.双摆杆的不同参数模型的更多相关文章

  1. 混沌理论(Chaos theory)和非线性系统

    混沌理论(Chaos theory)是关于非线性系统在一定参数条件下展现分岔(bifurcation).周期运动与非周期运动相互纠缠,以至于通向某种非周期有序运动的理论.在耗散系统和保守系统中,混沌运 ...

  2. 如何实现Linux+Windows双系统启动

    设置你的计算机根据需要启动 Windows 10 或 Ubuntu 18.04. 尽管 Linux 是一个有着广泛的硬件和软件支持的操作系统,但事实上有时你仍需要使用 Windows,也许是因为有些不 ...

  3. 混沌数学之Chua's circuit(蔡氏电路)

    蔡氏电路(英语:Chua's circuit),一种简单的非线性电子电路设计,它可以表现出标准的混沌理论行为.在1983年,由蔡少棠教授发表,当时他正在日本早稻田大学担任访问学者[1].这个电路的制作 ...

  4. 《零起点,python大数据与量化交易》

    <零起点,python大数据与量化交易>,这应该是国内第一部,关于python量化交易的书籍. 有出版社约稿,写本量化交易与大数据的书籍,因为好几年没写书了,再加上近期"前海智库 ...

  5. 【转】漫谈ANN(2):BP神经网络

    上一次我们讲了M-P模型,它实际上就是对单个神经元的一种建模,还不足以模拟人脑神经系统的功能.由这些人工神经元构建出来的网络,才能够具有学习.联想.记忆和模式识别的能力.BP网络就是一种简单的人工神经 ...

  6. 神经网络4_BP神经网络

    sklearn实战-乳腺癌细胞数据挖掘(博客主亲自录制视频教程) https://study.163.com/course/introduction.htm?courseId=1005269003&a ...

  7. 止损+TS

    单策略单品种单策略多品种多策略单品种和加仓多策略多品种静态仓位和动态仓位 金肯特钠(kingKeltner)布林强盗(BollingerBandit)动态突破(DynamicBreakOutII)恒温 ...

  8. [原创]AHA大会回顾

    AHA大会回顾 缘起 AHA之前参加了Daniel的培训,了解到AHA大会,觉得很高大上,开始有些心动.考虑到是工作时间,而且是外地,所以也就停留在心动层面了.之后与伯薇和四正吃饭,听说他们要去参加这 ...

  9. 对GBK的理解(内附全部字符编码列表):扩充的2万汉字低字节的高位不等于1,而且还剩许多编码空间没有利用

    各种编码查询表:http://bm.kdd.cc/ 由于GB 2312-80只收录6763个汉字,有不少汉字,如部分在GB 2312-80推出以后才简化的汉字(如“啰”),部分人名用字(如中国前总理朱 ...

  10. 汉字与区位码互转(天天使用的String存储的是内码),几个常见汉字编码,附有读书笔记

    汉=BABA(内码)=-A0A0=2626(区位码)字=D7D6(内码)=-A0A0=5554(区位码) 各种编码查询表:http://bm.kdd.cc/ “啊”字是GB2312之中的第一个汉字,会 ...

随机推荐

  1. 实在智能TARS-RPA-Agent,业界首发的产品级大模型Agent有何非凡之处?

    融合LLM的RPA进化到什么程度? AIGC如何借AI Agent落地? 像生成文本一样生成流程的ChatRPA,能够提升RPA新体验? 边探索边创建的ChatRPA,能否破解RPA与LLM融合难题? ...

  2. mac安装mysql8.0

    1.进入下载页 历史版本:https://downloads.mysql.com/archives/community/ 最新版本:https://dev.mysql.com/downloads/my ...

  3. 杰哥教你面试之一百问系列:java多线程

    java多线程是java面试中的高频问题,如何才能在面试中脱颖而出呢?熟读这里的一百个java多线程面试问题即可. 1. 什么是线程?什么是进程? 回答: 线程是操作系统能够进行调度的最小执行单位,它 ...

  4. 用 ChatGPT 做一个 Chrome 扩展 | 京东云技术团队

    用ChatGPT做了个Chrome Extension 最近科技圈儿最火的话题莫过于ChatGPT了. 最近又发布了GPT-4,发布会上的Demo着实吸睛. 笔记本上手画个网页原型,直接生成网页.网友 ...

  5. 关于前后端交互,取header的尴尬

    背景: 最近在写一个接口的时候,需求是这样的,上传excel,匹配项目有多少个字段匹配上了,如果匹配上了在单元格上标注绿色背景,然后返回excel文件和匹配的详细. 首先这个excel文件,后端是不会 ...

  6. 如何把网页打包成苹果原生APP并上架TF(TestFlight)

    打包网页APP并上架到TestFlight流程 需要准备的材料: 1. GDB苹果网页打包软件1.6.0或者以上版本: https://www.cnblogs.com/reachteam/p/1229 ...

  7. 基于Spring事务的可靠异步调用实践

    SpringTxAsync组件是仓储平台组(WMS6)自主研发的一个专门用于解决可靠异步调用问题的组件. 通过使用SpringTxAsync组件,我们成功地解决了在仓储平台(WMS6)中的异步调用需求 ...

  8. Python面向对象——Mixin机制、重载、多态与鸭子类型、绑定与非绑定方法、Python常见的内置函数

    文章目录 内容回顾 Mixin机制 1.什么是Mixin 2.Mixin来源 3.定义及优点 4.在python中的应用 5.在Django项目中的应用 重载(在子类派生的新方法中如何重用父类的功能) ...

  9. linux常用命令(六)

    用于查找系统文件的相关命令 grep find locate grep:查找文件中符号条件的字符串(关键词) 命令语法:grep [选项] 查找模式 [文件名] 选项 选项含义 -E 模式是一个可扩展 ...

  10. 黄金眼PAAS化数据服务DIFF测试工具的建设实践

    一.背景介绍 黄金眼PAAS化数据服务是一系列实现相同指标服务协议的数据服务,各个服务间按照所生产指标的主题作划分,比如交易实时服务提供实时交易指标的查询,财务离线服务提供离线财务指标的查询.黄金眼P ...