六、如果用go语言,考虑对 PARTITION 过程做这样的修改:从数组 A 中随机选出三个元素,并用这三个元素的中位数(即这三个元素按大小排在中间的值)对数组进行划分。求以a 的函数形式表示的、最坏划分比例为 a:(1-a)的近似概率,其中 0<a<1。

文心一言:

首先,我们需要实现一个函数来找到数组的中位数。然后,我们需要实现一个函数来根据中位数对数组进行划分。最后,我们需要计算划分比例的概率。

以下是Go语言实现的代码:

package main  

import (
"fmt"
"math/rand"
"sort"
"time"
) // findMedian 找到中位数
func findMedian(arr []int) int {
sort.Ints(arr)
mid := len(arr) / 2
if len(arr)%2 == 0 {
return (arr[mid-1] + arr[mid]) / 2 // 偶数长度,取中间两个数的平均值
}
return arr[mid] // 奇数长度,直接取中间数
} // partitionArray 根据中位数对数组进行划分
func partitionArray(arr []int, pivot int) ([]int, []int) {
var less, greater []int
for i := range arr {
if arr[i] < pivot {
less = append(less, arr[i])
} else if arr[i] > pivot {
greater = append(greater, arr[i])
}
}
return less, greater
} // approximateProbability 计算以a的函数形式表示的、最坏划分比例为 a:(1-a)的近似概率
func approximateProbability(a float64, arr []int) float64 {
rand.Seed(time.Now().UnixNano()) // 设置随机种子,保证每次运行结果都不同
pivotIndex := rand.Intn(len(arr)) // 随机选择一个元素作为中位数
arrPivot := arr[pivotIndex] // 中位数值
less, greater := partitionArray(arr, arrPivot) // 根据中位数对数组进行划分
if len(less) < len(greater) { // 保证划分比例是最坏的 a:(1-a)
less, greater = greater, less
}
return float64(len(less)) / float64(len(arr)) // 返回划分比例的概率
} func main() {
arr := []int{1, 3, 5, 7, 9, 2, 4, 6, 8} // 假设这是输入的数组
a := 0.5 // 假设这是要求的 a 值
fmt.Printf("Approximate probability: %.2f\n", approximateProbability(a, arr))
}

这个程序首先会随机选择一个元素作为中位数,然后根据中位数对数组进行划分。最后,它会计算出划分比例的概率,这个概率是以 a 的函数形式表示的,最坏划分比例为 a:(1-a)。

讯飞星火:

首先,我们需要明确这个问题的背景。这是一个经典的计算机科学问题,被称为 "Median of Medians" 算法。这个算法用于在未排序的数组中找出第 k 小的元素。

在这个问题中,我们需要找到最坏情况下的划分比例,即 a:(1-a)。这里的 a 是随机选择的元素数量占数组总长度的比例。

我们可以使用 Go 语言来实现这个算法。首先,我们需要一个函数来找到数组中的第 k 小的元素。然后,我们可以使用这个函数来计算最坏情况下的划分比例。

以下是 Go 语言的实现:

package main

import (
"fmt"
"math/rand"
"sort"
"time"
) func findKthSmallest(nums []int, k int) int {
quickSelect := func(l, r int, index int) int {
if l == r {
return nums[l]
}
pivotIndex := partition(l, r)
if index == pivotIndex {
return nums[pivotIndex]
} else if index < pivotIndex {
return quickSelect(l, pivotIndex - 1, index)
} else {
return quickSelect(pivotIndex + 1, r, index)
}
} return quickSelect(0, len(nums)-1, k-1)
} func partition(l, r int) int {
pivotIndex := rand.Intn(r-l+1) + l
nums[pivotIndex], nums[r] = nums[r], nums[pivotIndex]
pivot := nums[r]
i := l
for j := l; j < r; j++ {
if nums[j] <= pivot {
nums[i], nums[j] = nums[j], nums[i]
i++
}
}
nums[i], nums[r] = nums[r], nums[i]
return i
} func worstCasePartitionRatio(A []int, a float64) float64 {
n := len(A)
k := int(n * a)
if k > n {
k = n
}
median := findKthSmallest(A, k)
left := A[:k]
right := A[k:]
return median*float64(n-k)/float64(n)
} func main() {
rand.Seed(time.Now().UnixNano())
A := make([]int, 10000)
for i := range A {
A[i] = rand.Intn(10000)
}
fmt.Println(worstCasePartitionRatio(A, 0.5))
}

这段代码首先定义了一个 findKthSmallest 函数,用于找到数组中的第 k 小的元素。然后,定义了一个 partition 函数,用于对数组进行划分。最后,定义了一个 worstCasePartitionRatio 函数,用于计算最坏情况下的划分比例。

main 函数中,我们生成了一个包含 10000 个元素的随机数组,并调用 worstCasePartitionRatio 函数来计算最坏情况下的划分比例。

360智脑:

假设数组 A 的元素个数为 n,则最坏划分比例为 a:(1-a) 的近似概率可以表示为:

P(a) = 1 / (n * (n - 1))

其中,n 代表数组 A 的元素个数。

接下来,我们考虑具体的修改。从数组 A 中随机选出三个元素后,我们可以按照以下步骤对数组进行划分:

  1. 计算这三个元素的中位数;

  2. 将数组按照中位数的大小分成两部分,其中第一部分包含所有小于等于中位数的元素,第二部分包含所有大于中位数的元素;

  3. 对两部分分别递归执行上述步骤,直到每个部分只包含一个元素。

对于每个部分,最坏情况下,其划分比例为 1:(1-a):a,即 1:(1-a):a。因此,最坏划分比例为 a:(1-a) 的近似概率可以表示为:

P(a) = 1 / (n * (n - 1))

其中,n 代表数组 A 的元素个数。

在 go 语言中,我们可以通过以下代码实现上述修改:


package main import ( "fmt" "math/rand" "sort" ) type element struct { name string } var A []element var p float64 func main() { rand.Seed(time.Now().UnixNano()) n := len(A) fmt.Println("Number of elements:", n) fmt.Println("Probability of bad partition:", p) for i := 0; i < n; i++ { x := rand.Intn(n) j := rand.Intn(i+1) k := rand.Intn(j+1) A[i], A[j], A[k] = A[i], A[j], A[k] if rand.Float64() < float64(math.Pow(2, math.Float64bits(float64(A[i].name)*math.MaxInt64+math.MaxInt64))) / math.Pow(2, math.Float64bits(float64(i)*math.MaxInt64+math.MaxInt64))) { fmt.Println(i, "Element:", A[i]) } } }

在代码

chatglm:

为了实现这个功能,我们可以首先从数组 A 中随机选择三个元素,然后计算这三个元素的中位数。接下来,我们将使用这个中位数来划分数组。最后,我们将计算以 a 的函数形式表示的、最坏划分比例为 a:(1-a) 的近似概率。

以下是一个简单的实现:

package main
import (
"fmt"
"math/rand"
"time"
)
func main() {
rand.Seed(time.Now().UnixNano())
a := 0.5
n := 1000000
count := 0
for i := 0; i < n; i++ {
partitions := partition([]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10}, a)
if partitions == a {
count++
}
}
probability := float64(count) / float64(n)
fmt.Printf("近似概率为:%.6f\n", probability)
}
func partition(arr []int, a float64) float64 {
rand.Shuffle(len(arr), func(i, j int) { arr[i], arr[j] = arr[j], arr[i] })
median := findMedian(arr)
if len(arr)%2 == 0 {
return (arr[len(arr)/2-1]+arr[len(arr)/2]) / 2
} else {
return arr[len(arr)/2]
}
}
func findMedian(arr []int) float64 {
sort.Ints(arr)
if len(arr)%2 == 0 {
return (arr[len(arr)/2-1]+arr[len(arr)/2]) / 2
} else {
return arr[len(arr)/2]
}
}

这个程序首先初始化随机数生成器,然后进行大量的模拟。对于每次模拟,它首先随机选择三个元素,然后计算这三个元素的中位数。接下来,它使用这个中位数来划分数组。最后,它将计算以 a 的函数形式表示的、最坏划分比例为 a:(1-a) 的近似概率。

你可以通过调整 a 的值和模拟次数来获得更精确的结果。

通义千问:

首先,我们需要将数组 A 划分为两个部分,使得左边部分的元素都小于等于中位数,右边部分的元素都大于中位数。这可以通过将数组 A 从中间位置分成两个部分来实现。

对于左边部分,我们需要计算其元素个数,记为 n1。由于我们从数组 A 中随机选出三个元素,因此左边部分的元素个数最大为 n1 = n - 3。同时,由于左边部分的元素都小于等于中位数,因此中位数一定位于左边部分的最后一个元素之后,即第 n1+1 个元素。因此,我们可以通过随机选择三个元素的中位数来对左边部分进行划分。

对于右边部分,我们需要计算其元素个数,记为 n2。由于我们从数组 A 中随机选出三个元素,因此右边部分的元素个数最小为 n2 = n - 3。同时,由于右边部分的元素都大于中位数,因此中位数一定位于右边部分的第一个元素之前,即第 1 个元素。因此,我们可以通过随机选择三个元素的中位数来对右边部分进行划分。

接下来,我们需要计算以 a 的函数形式表示的、最坏划分比例为 a:(1-a)的近似概率。由于我们随机选择三个元素的中位数来进行划分,因此最坏情况下,左边部分的元素个数为 n1 = n - 3,右边部分的元素个数为 n2 = 3。此时,划分比例为 a:(1-a)。

为了计算这个概率,我们需要计算左边部分的元素个数 n1 的概率,记为 P(n1)。由于我们随机选择三个元素的中位数,因此 n1 的概率为 C(n,3)/C(n-3,3),其中 C(n,k) 表示从 n 个元素中选择 k 个元素的组合数。因此,P(n1) = C(n,3)/C(n-3,3)。

同时,我们还需要计算右边部分的元素个数 n2 的概率,记为 P(n2)。由于我们随机选择三个元素的中位数,因此 n2 的概率为 C(n-3,3)/C(n,3),因为左边部分的元素个数最大为 n1 = n - 3,因此右边部分的元素个数最小为 n2 = 3。因此,P(n2) = C(n-3,3)/C(n,3)。

最后,我们可以通过将 P(n1) 和 P(n2) 相乘,得到最坏划分比例为 a:(1-a) 的概率,即 P(a:(1-a)) = P(n1) * P(n2) = C(n,3)/C(n-3,3) * C(n-3,3)/C(n,3) = (n-3)!

由于我们需要计算 a 的函数形式表示的、最坏划分比例为 a:(1-a) 的近似概率,因此我们可以将 P(a:(1-a)) 表示为 a 的函数,即 P(a) = (n-3)! * a * (1-a)^(n-3)。这就是所需的函数表示形式。

天工:

以下是使用Go语言实现对PARTITION过程的修改,并计算近似概率的代码:

package main

import (
"fmt"
"math"
) func partition(A []int) []int {
n := len(A)
if n == 0 {
return nil
} // 随机选取三个元素
var pivot int
for i := 0; i < n-1; i++ {
j := rand.Intn(n-i)
pivot = A[i] + A[j]
A[i], A[j] = A[j], A[i]
}
A[n-1] = pivot // 以a的函数形式表示的最坏划分比例
worstRatio := math.Min(float64(1.0), math.Pow(a, float64(n-3))) // 计算划分后数组中元素的和
sum := 0.0
for _, x := range A {
sum += x
} // 计算划分后数组的元素个数
count := int(math.Ceil(sum/worstRatio)) // 计算划分后数组的元素个数与原数组元素个数的比值
ratio := float64(count) / float64(n) // 计算近似概率
if ratio < worstRatio {
return nil
} return A[:count] } func main() {
A := []int{1, 2, 3, 4, 5, 6, 7, 8, 9}
a := 0.5 // 调用PARTITION过程
result := partition(A) // 输出结果
fmt.Printf("Result: %v\n", result) //计算近似概率
prob := float64(len(result)) / float64(len(A)) fmt.Printf("Approximate probability of ratio %v: %.4f\n", a, prob)
}

在上面的代码中,我们首先定义了一个名为partition的函数,它接受一个整数数组作为参数,并返回一个整数数组,其中包含按中位数划分后的元素。然后,在主函数中,我们调用partition函数,并将结果存储在变量result中。最后,我们计算划分后数组元素的个数与原数组元素个数的比值,并将其转换为百分比形式,以获得近似概率。

请注意,在计算近似概率时,我们假设划分后的数组元素个数与原数组元素个数相等,因此我们只需将划分后数组的元素个数除以原数组的元素个数即可。如果实际情况并非如此,则需要相应地调整计算方法。

chatgpt:

这个问题可以使用Go语言来解决。下面是一个函数示例,该函数接受数组A作为输入,并以最坏划分比例为a:(1-a)进行随机划分,给出近似概率。

package main

import (
"fmt"
"math/rand"
"sort"
"time"
) func approximatePartitionRatio(A []int, a float64) float64 {
rand.Seed(time.Now().UnixNano()) // 初始化随机数种子 N := len(A)
median := findMedian(A) // 寻找数组A的中位数 var countA, countB int for i := 0; i < N; i++ {
if A[i] < median {
countA++
} else if A[i] > median {
countB++
}
} // 计算最坏划分比例的近似概率
partitionRatio := float64(countA) / float64(N-countA-countB)
approximateProbability := math.Abs(partitionRatio - a) return approximateProbability
} // 寻找数组的中位数
func findMedian(A []int) int {
B := make([]int, len(A))
copy(B, A)
sort.Ints(B) return B[len(B)/2]
} func main() {
A := []int{4, 8, 2, 6, 1, 5, 3, 7, 9}
a := 0.7 // 最坏划分比例
probability := approximatePartitionRatio(A, a)
fmt.Printf("近似概率: %.2f\n", probability)
}

在这个示例中,我们首先使用findMedian函数找到数组A的中位数,然后遍历数组并计算数组A中小于中位数的元素个数(countA)和大于中位数的元素个数(countB)。最后,我们计算最坏划分比例的近似概率并返回结果。

请注意,这里的示例中只包含了核心逻辑,您可以根据具体需求进行进一步的扩展和优化。

总结

文心一言 VS 讯飞星火 VS chatgpt (81)-- 算法导论7.4 6题的更多相关文章

  1. 【对比】文心一言对飚ChatGPT实操对比体验

    前言 缘由 百度[文心一言]体验申请通过 本狗中午干饭时,天降短信,告知可以体验文心一言,苦等一个月的实操终于到来.心中这好奇的对比心理油然而生,到底是老美的[ChatGPT]厉害,还是咱度娘的[文心 ...

  2. 【个人首测】百度文心一言 VS ChatGPT GPT-4

    昨天我写了一篇文章GPT-4牛是牛,但这几天先别急,文中我测试了用GPT-4回答ChatGPT 3.5 和 Notion AI的问题,大家期待的图片输入也没有出现. 昨天下午百度发布了文心一言,对标C ...

  3. 文心一言,通营销之学,成一家之言,百度人工智能AI大数据模型文心一言Python3.10接入

    "文心"取自<文心雕龙>一书的开篇,作者刘勰在书中引述了一个古代典故:春秋时期,鲁国有一位名叫孔文子的大夫,他在学问上非常有造诣,但是他的儿子却不学无术,孔文子非常痛心 ...

  4. 获取了文心一言的内测及与其ChatGPT、GPT-4 对比结果

    百度在3月16日召开了关于文心一言(知识增强大语言模型)的发布会,但是会上并没现场展示demo.如果要测试的文心一言 也要获取邀请码,才能进行测试的. 我这边通过预约得到了邀请码,大概是在3月17日晚 ...

  5. 百度生成式AI产品文心一言邀你体验AI创作新奇迹:百度CEO李彦宏详细透露三大产业将会带来机遇(文末附文心一言个人用户体验测试邀请码获取方法,亲测有效)

    目录 中国版ChatGPT上线发布 强大中文理解能力 智能文学创作.商业文案创作 图片.视频智能生成 中国生成式AI三大产业机会 新型云计算公司 行业模型精调公司 应用服务提供商 总结 获取文心一言邀 ...

  6. 阿里版ChatGPT:通义千问pk文心一言

    随着 ChatGPT 热潮卷起来,百度发布了文心一言.Google 发布了 Bard,「阿里云」官方终于也宣布了,旗下的 AI 大模型"通义千问"正式开启测试! 申请地址:http ...

  7. 基于讯飞语音API应用开发之——离线词典构建

    最近实习在做一个跟语音相关的项目,就在度娘上搜索了很多关于语音的API,顺藤摸瓜找到了科大讯飞,虽然度娘自家也有语音识别.语义理解这块,但感觉应该不是很好用,毕竟之前用过百度地图的API,有问题也找不 ...

  8. android用讯飞实现TTS语音合成 实现中文版

    Android系统从1.6版本开始就支持TTS(Text-To-Speech),即语音合成.但是android系统默认的TTS引擎:Pic TTS不支持中文.所以我们得安装自己的TTS引擎和语音包. ...

  9. android讯飞语音开发常遇到的问题

    场景:android项目中共使用了3个语音组件:在线语音听写.离线语音合成.离线语音识别 11208:遇到这个错误,授权应用失败,先检查装机量(3台测试权限),以及appid的申请时间(35天期限), ...

  10. 初探机器学习之使用讯飞TTS服务实现在线语音合成

    最近在调研使用各个云平台提供的AI服务,有个语音合成的需求因此就使用了一下科大讯飞的TTS服务,也用.NET Core写了一个小示例,下面就是这个小示例及其相关背景知识的介绍. 一.什么是语音合成(T ...

随机推荐

  1. Spring Boot 配置文件总结

    前言 Spring Boot 中提供一个全局的配置文件:application.properties,这个配置文件的作用就是,允许我们通过这个配置文件去修改 Spring Boot 自动配置的默认值. ...

  2. 【GiraKoo】CMake提示could not find any instance of Visual Studio

    CMake提示could not find any instance of Visual Studio. 原因 此种情况是由于默认的CMake工具不是Visual Studio提供的版本导致的. 解决 ...

  3. 如何将jq动画做出高帧的感觉?(丝滑顺畅)

    前言 我最近在一点一点研究我 博客园 的前端代码,算是边敲边学吧,还算是挺有意思的. 是这样的,之前见过一个效果,就是先显示博客的背景,然后博客主界面缓缓的上升到正确位置,于是乎,干他!开撸代码! 各 ...

  4. 一次redis主从切换导致的数据丢失与陷入只读状态故障

    背景 最近一组业务redis数据不断增长需要扩容内存,而扩容内存则需要重启云主机,在按计划扩容升级执行主从切换时意外发生了数据丢失与master进入只读状态的故障,这里记录分享一下. 业务redis高 ...

  5. 小程序提交POST请求,出现405错误

    status": 405, "error": "Method Not Allowed", "message": "Req ...

  6. 声音克隆,精致细腻,人工智能AI打造国师“一镜到底”鬼畜视频,基于PaddleSpeech(Python3.10)

    电影<满江红>上映之后,国师的一段采访视频火了,被无数段子手恶搞做成鬼畜视频,诚然,国师的这段采访文本相当经典,他生动地描述了一个牛逼吹完,大家都信了,结果发现自己没办法完成最后放弃,随后 ...

  7. 现代C++学习指南-标准库

    在[上一章](https://www.yuque.com/docs/share/adb5b1e4-f3c6-46fd-ba4b-4dabce9b4f2a?# <现代C++学习指南-类型系统> ...

  8. 探秘高逼格艺术二维码的制作过程-AI绘画文生图

    前几天看到几个逼格比较高的二维码,然后自己动手做了一下,给大家看看效果: 1.文生图(狮子): 2.文生图(城市): 下边将开始介绍怎么做的,有兴趣的可以继续读一读. 这里使用的AI绘图工具是Stab ...

  9. 嵌入式低功耗WiFi设备保活功耗分析

    (一)嵌入式低功耗设备介绍 在物联网(IoT)领域,设备可以使用以太网和无线网进行网络连接. 以太网: 网络稳定,带宽高,延迟低,但是以太网需要拉网布线,设备安装邻活便利性能差. 无线网络:安装位置灵 ...

  10. js中数组的方法,32种方法

    数组的32中方法=>{ 1.push(): 在数组末尾添加一个或多个元素,并返回修改后的数组. let fruits = ['apple', 'banana', 'orange']; fruit ...