广义随机森林

了解causal forest之前,需要先了解其forest实现的载体:GENERALIZED RANDOM FORESTS[6](GRF)

其是随机森林的一种推广, 经典的随机森林只能去估计label Y,不能用于估计复杂的目标,比如causal effect,Causal Tree、Cauasl Forest的同一个作者对其进行了改良。先定义一下矩估计参数表达式:

\[\begin{equation} \tag{1}

\mathbb E[\psi_{\theta(x), \upsilon(x)}(O_i)|X=x]=0

\end{equation}

\]

其中,\(\psi\) 是score function,也就是measure metric,\(\theta\) 是我们不得不去计算的参数,比如tree里面的各项参数如特征threshold,叶子节点估计值..etc, \(\upsilon\)

则是一个可选参数。\(O\) 表示和计算相关的值,比如监督信号。像response类的模型,\(O_i={Y_i}\), 像causal 模型,\(O_i={Y_i, W_i}\) \(W\) 表示某种treatment。

该式在实际优化参数的时候,等价于最小化:

\[\tag{2} \left(\hat \theta(x), \upsilon(x)\right)\in argmin_{\theta, \upsilon}\left|\left|\sum\alpha_i(x)\psi_{\theta, \upsilon(O_i)}\right|\right|_2
\]

其中,\(\alpha\) 是一种权重,当然,这里也可以理解为树的权重,假设总共需要学习\(B\) 棵树:

\[\alpha_i(x)=\frac{1}{B}\sum_{b=1}^{B}\alpha_{bi}(x)
\]
\[\alpha_{bi(x)}=\frac{1(\{x\in L_b(x)\})}{|L_b(x)|}
\]

其中,\(L_b(x)\) 表示叶子节点里的样本。本质上,这个权重表示的是:训练样本和推理或者测试样本的相似度,因为如果某个样本\(x_i\)落入叶子\(L_b\) ,且我们可以认为叶子节点内的样本同质的情况下,那么可以认为这个样本和当前落入的tree有相似性。

当然,按照这个公式,如果\(L_b\) 很大,说明进入这个叶子的训练样本很多,意味着没划分完全,异质性低,则最后分配给这棵树的权重就低,反之亦然。

分裂准则框架

对于每棵树,父节点\(P\) 通过最优化下式进行分裂:

\[\tag{3}\left(\hat{\theta}_P, \hat{\nu}_P\right)(\mathcal{J}) \in \operatorname{argmin}_{\theta, \nu}\left\{\left\|\sum_{\left\{i \in \mathcal{J}: X_i \in P\right\}} \psi_{\theta, \nu}\left(O_i\right)\right\|_2\right\} .
\]

其中,\(\mathcal{J}\) 表示train set,分裂后形成的2个子节点标准为:通过最小化估计值与真实值间的误差平方:

\[\tag{4}\operatorname{err}\left(C_1, C_2\right)=\sum_{j=1,2} \mathbb{P}\left[X \in C_j \mid X \in P\right] \mathbb{E}\left[\left(\hat{\theta}_{C_j}(\mathcal{J})-\theta(X)\right)^2 \mid X \in C_j\right]
\]

等价于最大化节点间的异质性:

\[\tag{5}\Delta\left(C_1, C_2\right):=n_{C_1} n_{C_2} / n_P^2\left(\hat{\theta}_{C_1}(\mathcal{J})-\hat{\theta}_{C_2}(\mathcal{J})\right)^2
\]

但是\(\theta\) 参数比较难优化,交给梯度下降:

\[\tag{6}\tilde{\theta}_C=\hat{\theta}_P-\frac{1}{\left|\left\{i: X_i \in C\right\}\right|} \sum_{\left\{i: X_i \in C\right\}} \xi^{\top} A_P^{-1} \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right)
\]

其中,\(\hat \theta_P\) 通过 (2) 式获得, \(A_p\) 为score function的梯度

\[\tag{7}A_P=\frac{1}{\left|\left\{i: X_i \in P\right\}\right|} \sum_{\left\{i: X_i \in P\right\}} \nabla \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right),
\]

梯度计算部分包含2个step:

  • step1:labeling-step 得到一个pseudo-outcomes
\[\tag{8}\rho_i=-\xi^{\top} A_P^{-1} \psi_{\hat{\theta}_P, \hat{\nu}_P}\left(O_i\right) \in \mathbb{R}$.
\]
  • step2:回归阶段,用这个pseudo-outcomes 作为信号,传递给split函数, 最终是最大化下式指导节点分割
\[{\Delta}\left(C_1, C_2\right)=\sum_{j=1}^2 \frac{1}{\left|\left\{i: X_i \in C_j\right\}\right|}\left(\sum_{\left\{i: X_i \in C_j\right\}} \rho_i\right)^2
\]

以下是GRF的几种Applications:

Causal Forest

以Casual-Tree为base,不做任何估计量的改变

与单棵 tree 净化到 ensemble 一样,causal forest[7] 沿用了经典bagging系的随机森林,将一颗causal tree 拓展到多棵:

\[\hat \tau=\frac{1}{B}\sum_{b=1}^{B} \hat \tau_b(x)
\]

其中,每科子树\(\hat \tau\) 为一颗Casual Tree。使用随机森林作为拓展的好处之一是不需要对causal tree做任何的变换,这一点比boosing系的GBM显然成本也更低。

不过这个随机森林使用的是广义随机森林 , 经典的随机森林只能去估计label Y,不能用于估计复杂的目标,比如causal effect,Causal Tree、Cauasl Forest的同一个作者对其进行了改良,放在后面再讲。

在实现上,不考虑GRF,单机可以直接套用sklearn的forest子类,重写fit方法即可。分布式可以直接套用spark ml的forest。

self._estimator = CausalTreeRegressor(
control_name=control_name,
criterion=criterion,
groups_cnt=groups_cnt) trees = [self._make_estimator(append=False, random_state=random_state)
for i in range(n_more_estimators)] trees = Parallel(
n_jobs=self.n_jobs,
verbose=self.verbose,
**_joblib_parallel_args,
)(
delayed(_parallel_build_trees)(
t,
self,
X,
y,
sample_weight,
i,
len(trees),
verbose=self.verbose,
class_weight=self.class_weight,
n_samples_bootstrap=n_samples_bootstrap,
)
for i, t in enumerate(trees)
) self.estimators_.extend(trees)

CAPE:  适用连续treatment 的 causal effect预估

Conditional Average Partial Effects(CAPE)

GRF给定了一种框架:输入任意的score-function,能够指导最大化异质节点的方向持续分裂子树,和response类的模型一样,同样我们需要一些估计值(比如gini index、entropy)来计算分裂前后的score-function变化,计算估计值需要估计量,定义连续treatment的估计量为:

\[\theta(x)=\xi^{\top} \operatorname{Var}\left[W_i \mid X_i=x\right]^{-1} \operatorname{Cov}\left[W_i, Y_i \mid X_i=x\right]
\]

估计量参与指导分裂计算,但最终,叶子节点存储的依然是outcome的期望。

此处的motivation来源于工具变量和线性回归:

\[y=f(x)=wx+b
\]

此处我们假设\(x\)是treatment,y是outcome, \(w\) 作为一个参数简单的描述了施加treatment对结果的直接影响,要寻找到参数我们需要一个指标衡量参数好坏, 也就是loss, 和casual tree一样,通常使用mse:

\[L(w, b) = \frac{1}{2}\sum(f(x)-y)^2
\]

为了最快的找到这个w,当然是往函数梯度的方向, 我们对loss求偏导并令其为0:

\[\tag{1}\frac{\partial L}{\partial w}=\sum(f(x)-y)x=\sum(wx+b-y)x
\]
\[ \tag{2}

\begin{aligned}

\frac{\partial L}{\partial b} & = \sum(f(x)-y)=\sum(wx+b-y) \\

& \Rightarrow \sum b= \sum y-\sum wx \\

& \Rightarrow b = E(y)-wE(x) = \bar y - w\bar x

\end{aligned}

\]

(2) 代入 (1) 式可得:

\[
\begin{aligned}

\frac{\partial L}{\partial w} & \Rightarrow \sum(wx+\bar y-w\bar x-y)x =0 \\

&\Rightarrow w=\frac{\sum xy-\bar y\sum x}{\sum x^2-\bar x\sum x} \\

&\Rightarrow w=\frac{\sum(x-\bar x)(y-\bar y)}{\sum(x-\bar x)^2}\\

&\Rightarrow w=\frac{Cov(x,y)}{Var(x)}

\end{aligned}

\]

可简化得参数w是关于treatment和outcome的协方差/方差。至于\(\xi\) , 似乎影响不大。

refs

  1. https://hwcoder.top/Uplift-1
  2. 工具: scikit-uplift
  3. Meta-learners for Estimating Heterogeneous Treatment Effects using Machine Learning
  4. Athey, Susan, and Guido Imbens. "Recursive partitioning for heterogeneous causal effects." Proceedings of the National Academy of Sciences 113.27 (2016): 7353-7360.
  5. https://zhuanlan.zhihu.com/p/115223013
  6. Athey, Susan, Julie Tibshirani, and Stefan Wager. "Generalized random forests." (2019): 1148-1178.
  7. Wager, Stefan, and Susan Athey. "Estimation and inference of heterogeneous treatment effects using random forests." Journal of the American Statistical Association 113.523 (2018): 1228-1242.
  8. Rzepakowski, P., & Jaroszewicz, S. (2012). Decision trees for uplift modeling with single and multiple treatments. Knowledge and Information Systems32, 303-327.
  9. annik Rößler, Richard Guse, and Detlef Schoder. The best of two worlds: using recent advances from uplift modeling and heterogeneous treatment effects to optimize targeting policies. International Conference on Information Systems, 2022.

Causal Inference理论学习篇-Tree Based-Causal Forest的更多相关文章

  1. Targeted Learning R Packages for Causal Inference and Machine Learning(转)

    Targeted learning methods build machine-learning-based estimators of parameters defined as features ...

  2. 因果推理综述——《A Survey on Causal Inference》一文的总结和梳理

    因果推理 本文档是对<A Survey on Causal Inference>一文的总结和梳理. 论文地址 简介 关联与因果 先有的鸡,还是先有的蛋?这里研究的是因果关系,因果关系与普通 ...

  3. 【统计】Causal Inference

    [统计]Causal Inference 原文传送门 http://www.stat.cmu.edu/~larry/=sml/Causation.pdf 过程 一.Prediction 和 causa ...

  4. Causal Inference

    目录 Standardization 非参数情况 Censoring 参数模型 Time-varying 静态 IP weighting 无参数 Censoring 参数模型 censoring 条件 ...

  5. A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python)

    A Complete Tutorial on Tree Based Modeling from Scratch (in R & Python) MACHINE LEARNING PYTHON  ...

  6. 算法---FaceNet理论学习篇

    FaceNet算法-理论学习篇 @WP20190228 ==============目 录============ 一.LFW数据集简介 二.FaceNet算法简介 FaceNet算法=MTCNN模型 ...

  7. Decision Tree、Random Forest、AdaBoost、GBDT

    原文地址:https://www.jianshu.com/p/d8ceeee66a6f Decision Tree 基本思想在于每次分裂节点时选取一个特征使得划分后得到的数据集尽可能纯. 划分标准 信 ...

  8. Chapter 2 Randomized Experiments

    目录 概 2.1 Randomization 2.2 Conditional randomization 2.3 Standardization 2.4 Inverse probability wei ...

  9. Chapter 6 Graphical Representation of Causal Effects

    目录 6.1 Causal diagrams 6.2 Causal diagrams and marginal independence 6.3 Causal diagrams and conditi ...

  10. Chapter 1 A Definition of Causal Effect

    目录 1.1 Individual casual effects 1.2 Average casual effects 1.5 Causation versus association Hern\(\ ...

随机推荐

  1. es索引数据复制并增加条件和修改目标数据值

    es操作同一个索引里数据的复制语法 复制数据: POST _reindex { "source": { "index": "source_index& ...

  2. 阿里二面:如何定位&避免死锁?连着两个面试问到了!

    在面试过程中,死锁是必问的知识点,当然死锁也是我们日常开发中也会遇到的一个问题,同时一些业务场景例如库存扣减,银行转账等都需要去考虑如何避免死锁,一旦线上发生了死锁,那可能年终不保.....下面我们就 ...

  3. 码上掘金 里面 嵌入自定义组件,可以用做组件demo演示

    查看代码片段 https://code.juejin.cn/pen/7128211910696108066 需求 将写的组件演示出来,默认 码上掘金 不能 嵌入组件. 解决问题 选择自定义模板,所有代 ...

  4. debian卡顿,造成用户注销现象的原因以及解决方法

    现象:当时电脑正在运行,宝塔面板安装初始化应用,一个浏览器,一个虚拟机 解决方法:目前还不清楚--是不是负载过大?好奇怪!

  5. CMake基本配置与注意事项

    CMake基本配置与注意事项 目录 CMake基本配置与注意事项 CMake message打印日志 find_library查找一个NDK工具中的库 添加多个源文件 CMake中引用其他的 CMak ...

  6. 宁波市ctf线下赛awd总结

    这是第四届宁波市ctf比赛的线下awd经验总结. 由于主办方的服务器出错,原定于14:00开始的比赛,最后17:30才开始,一直打到20:30. 并且突然改了一部分比赛方式,取消了前30分钟的加固时间 ...

  7. 记录--两行CSS让页面提升了近7倍渲染性能!

    这里给大家分享我在网上总结出来的一些知识,希望对大家有所帮助 前言 对于前端人员来讲,最令人头疼的应该就是页面性能了,当用户在访问一个页面时,总是希望它能够快速呈现在眼前并且是可交互状态.如果页面加载 ...

  8. Python glob库的用法

    一.匹配指定文件夹下的所有文件 files = glob.glob("C:\\Users\\liuchunlin2\\Desktop\\测试数据\\*") print(files) ...

  9. pycharm 常见易错的PEP8规范

    PEP8规范 ( Python Enhancement Proposal ) PEP 8: E231 missing whitespace after ','这个意思是逗号后面要有一个空格 PEP 8 ...

  10. 无人不识又无人不迷糊的this

    本文分享自华为云社区<3月阅读周·你不知道的JavaScript | 无人不识又无人不迷糊的this>,作者: 叶一一. 关于this this关键字是JavaScript中最复杂的机制之 ...