使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类就这么简单!
前言
今天大姚给大家分享一个.NET开源、免费、跨平台(支持Windows、Linux、macOS多个操作系统)的机器学习框架:ML.NET。并且本文将会带你快速使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类。
ML.NET框架介绍
ML.NET 允许开发人员在其 .NET 应用程序中轻松构建、训练、部署和使用自定义模型,而无需具备开发机器学习模型的专业知识或使用 Python 或 R 等其他编程语言的经验。该框架提供从文件和数据加载的数据。数据库,支持数据转换,并包含许多机器学习算法。
AI和机器学习有什么区别?
AI 是一个计算分支,涉及训练计算机执行通常需要人类智能的操作。机器学习是 AI 的一部分,它涉及计算机从数据中学习和在数据中发现模式,以便能够自行对新数据进行预测。
ML.NET支持的.NET框架
目前ML.NET支持.NET、.NET Core (版本 2.0 及更高版本)和 .NET Framework (版本 4.6.1 及更高版本)。
框架源代码
ML.NET官方提供的使用示例
ML.NET使用环境安装
安装本机.NET环境
首先需要准备好本机的.NET开发环境:
Visual Studio环境配置
选择.NET 桌面开发工作负荷以及可选的 ML.NET Model Builder 组件。
ML.NET Model Builder 组件介绍:提供易于理解的可视界面,用于在 Visual Studio 内生成、训练和部署自定义机器学习模型。
创建一个WinForms应用
创建一个名为:MLNETExercise
的.NET8 WinForms应用。
准备好需要训练的图片
训练图像分类模型
测试训练模型的分析效果
在WinForms中调用图像分类模型
调用完整代码
private void Btn_SelectImage_Click(object sender, EventArgs e)
{
using (OpenFileDialog openFileDialog = new OpenFileDialog())
{
openFileDialog.Title = "Select Image";
openFileDialog.Filter = "Image Files (*.jpg, *.png, *.bmp)|*.jpg;*.png;*.bmp|All Files (*.*)|*.*";
if (openFileDialog.ShowDialog() == DialogResult.OK)
{
// 获取用户选择的文件路径
string selectedImagePath = openFileDialog.FileName;
// 从文件加载图片
Image img = Image.FromFile(openFileDialog.FileName);
this.pictureBox.Image = img;
var imageBytes = File.ReadAllBytes(selectedImagePath);
MLImageAnalysis.ModelInput sampleData = new MLImageAnalysis.ModelInput()
{
ImageSource = imageBytes,
};
//Load model and predict output
var result = MLImageAnalysis.Predict(sampleData);
this.txt_Box.Text = result.PredictedLabel;
}
}
}
运行效果展示
项目源码地址
更多项目实用功能和特性欢迎前往项目开源地址查看,别忘了给项目一个Star支持。
- GitHub开源地址:https://github.com/dotnet/machinelearning
- 本文示例源码地址:https://github.com/YSGStudyHards/DotNetExercises/tree/master/MLNETExercise
优秀项目和框架精选
该项目已收录到C#/.NET/.NET Core优秀项目和框架精选中,关注优秀项目和框架精选能让你及时了解C#、.NET和.NET Core领域的最新动态和最佳实践,提高开发工作效率和质量。坑已挖,欢迎大家踊跃提交PR推荐或自荐(让优秀的项目和框架不被埋没)。
DotNetGuide技术社区交流群
- DotNetGuide技术社区是一个面向.NET开发者的开源技术社区,旨在为开发者们提供全面的C#/.NET/.NET Core相关学习资料、技术分享和咨询、项目框架推荐、求职和招聘资讯、以及解决问题的平台。
- 在DotNetGuide技术社区中,开发者们可以分享自己的技术文章、项目经验、学习心得、遇到的疑难技术问题以及解决方案,并且还有机会结识志同道合的开发者。
- 我们致力于构建一个积极向上、和谐友善的.NET技术交流平台。无论您是初学者还是有丰富经验的开发者,我们都希望能为您提供更多的价值和成长机会。
使用ML.NET训练一个属于自己的图像分类模型,对图像进行分类就这么简单!的更多相关文章
- Keras 训练一个单层全连接网络的线性回归模型
1.准备环境,探索数据 import numpy as np from keras.models import Sequential from keras.layers import Dense im ...
- ML.NET 示例:图像分类模型训练-首选API(基于原生TensorFlow迁移学习)
ML.NET 版本 API 类型 状态 应用程序类型 数据类型 场景 机器学习任务 算法 Microsoft.ML 1.5.0 动态API 最新 控制台应用程序和Web应用程序 图片文件 图像分类 基 ...
- 【PyTorch深度学习60分钟快速入门 】Part4:训练一个分类器
太棒啦!到目前为止,你已经了解了如何定义神经网络.计算损失,以及更新网络权重.不过,现在你可能会思考以下几个方面: 0x01 数据集 通常,当你需要处理图像.文本.音频或视频数据时,你可以使用标准 ...
- Fine-tuning Convolutional Neural Networks for Biomedical Image Analysis: Actively and Incrementally如何使用尽可能少的标注数据来训练一个效果有潜力的分类器
作者:AI研习社链接:https://www.zhihu.com/question/57523080/answer/236301363来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载 ...
- 深度学习笔记 (二) 在TensorFlow上训练一个多层卷积神经网络
上一篇笔记主要介绍了卷积神经网络相关的基础知识.在本篇笔记中,将参考TensorFlow官方文档使用mnist数据集,在TensorFlow上训练一个多层卷积神经网络. 下载并导入mnist数据集 首 ...
- PyTorch Tutorials 4 训练一个分类器
%matplotlib inline 训练一个分类器 上一讲中已经看到如何去定义一个神经网络,计算损失值和更新网络的权重. 你现在可能在想下一步. 关于数据? 一般情况下处理图像.文本.音频和视频数据 ...
- 如何正确训练一个 SVM + HOG 行人检测器
这几个月一直在忙着做大论文,一个基于 SVM 的新的目标检测算法.为了做性能对比,我必须训练一个经典的 Dalal05 提出的行人检测器,我原以为这个任务很简单,但是我错了. 为了训练出一个性能达标的 ...
- 如何使用自对弈强化学习训练一个五子棋机器人Alpha Gobang Zero
前言 2016年3月,Alpha Go 与围棋世界冠军.职业九段棋手李世石进行围棋人机大战,以4比1的总比分获胜,在当时引起了轩然大波.2017年10月,谷歌公布了新版五子棋程序 AlphaGo Ze ...
- [Pytorch框架] 1.6 训练一个分类器
文章目录 训练一个分类器 关于数据? 训练一个图像分类器 在GPU上训练 多GPU训练 下一步? 训练一个分类器 上一讲中已经看到如何去定义一个神经网络,计算损失值和更新网络的权重. 你现在可能在想下 ...
- 五分钟搭建一个基于BERT的NER模型
BERT 简介 BERT是2018年google 提出来的预训练的语言模型,并且它打破很多NLP领域的任务记录,其提出在nlp的领域具有重要意义.预训练的(pre-train)的语言模型通过无监督的学 ...
随机推荐
- MySQL的索引优化
一.索引的使用场景 1.全值匹配 通过主键索引查询 mysql> explain select * from t_goods where id = 1 \G; ***************** ...
- d3d12龙书阅读----绘制几何体(上) 课后习题
d3d12龙书阅读----绘制几何体(上) 课后习题 练习1 完成相应的顶点结构体的输入-布局对象 typedef struct D3D12_INPUT_ELEMENT_DESC { 一个特定字符串 ...
- 常回家看看之off_by_one
off_by_one这个漏洞比较特殊,它不像上一期的堆溢出,可以溢出很多字节,它只能溢出一个字节,在栈里面也可以通过这个漏洞修改返回地址什么的,在堆里面我们主要利用它来修改堆块的大小,形成fake_c ...
- 利用英特尔 Gaudi 2 和至强 CPU 构建经济高效的企业级 RAG 应用
检索增强生成 (Retrieval Augmented Generation,RAG) 可将存储在外部数据库中的新鲜领域知识纳入大语言模型以增强其文本生成能力.其提供了一种将公司数据与训练期间语言模型 ...
- MLP实现minist数据集分类任务
1. 数据集 minist手写体数字数据集 2. 代码 ''' Description: Author: zhangyh Date: 2024-05-04 15:21:49 LastEditTime: ...
- vue.js的M-V-VM思想
MVVM 是Model-View-ViewModel 的缩写,它是一种基于前端开发的架构模式. Model 指代的就是vue对象的data属性里面的数据.这里的数据要显示到页面中. View 指代的就 ...
- aspnet core运行后台服务任务
之前在公司的一个项目中需要用到定时程序,当时使用的是aspnet core提供的IHostedService接口来实现后台定时程序,具体的示例可去官网查看.现在的dotnet core中默认封装了实现 ...
- kubenetes中的pod删除策略 级联删除与非级联删除
StatefulSet 有状态应用[有状态应用] 有状态:StatefulSet - 集群节点之间的关系. - 数据不完全一致. - 实例之间不对等的关系. - 依靠外部存储的应用. - 通过dns维 ...
- iOS 如何保持线程一直在运转
1.简单的可以想到,写一个while循环 while (TRUE) { } 但是这种方式存在缺陷,将导致CPU占用100%,两个核. p.p1 { margin: 0; font: 12px &quo ...
- 在mobaxten上使用scala报错
查看报错信息 [ERROR] Failed to construct terminal; falling back to unsupported java.io.IOException: Cannot ...