一、平衡二叉树

  任何一个数据的查找过程都需要从根结点出发,沿某一个路径朝叶子结点前进。因此查找中数据比较次数与树的形态密切相关。 对于二叉树来说,当树中每个结点左右子树高度大致相同时,树高为logN。则平均查找长度与logN成正比,查找的平均时间复杂度在O(logN)数量级上。当先后插入的关键字有序时,BST退化成单支树结构。此时树高n。平均查找长度为(n+1)/2,查找的平均时间复杂度在O(N)数量级上。

  二叉查找树在最差情况下竟然和顺序查找效率相当,这是无法仍受的。事实也证明,当存储数据足够大的时候,树的结构对某些关键字的查找效率影响很大。当然,造成这种情况的主要原因就是BST不够平衡(左右子树高度差太大)。既然如此,那么我们就需要通过一定的算法,将不平衡树改变成平衡树。因此,AVL树就诞生了。AVL(Adelson-Velskii and Landis)树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文《An algorithm for the organization of information》中发表了它 。

  在二叉树中,任何一个节点v的平衡因子都定义为其左、右子树的高度差。空树的高度定义为-1。在二叉查找树T中,若所有节点的平衡因子的绝对值均不超过1,则称T为一棵AVL树。维护平衡只需在插入和删除时维护平衡即可。

    

  新节点记为N,第一个被破坏平衡的祖先记为p(至少是祖父),在同一路径上的p的子节点记为q,q的子节点记为s。按pqs的位置关系分为左左型,左右型,右右型,右左型,两两对称。通过旋转来使树重新平衡,旋转不会破坏BST的性质,也就是中序遍历的顺序,但能改变子树高度。

    

  旋转操作:旋转操作是一种调整树结构而不改变二叉查找树特性的手段。这里要理解树旋转的意义,树的最终目的不是维护节点与节点之间的层级关系,关键是如何用AVL树这种数据结构进行更好的查找和搜索。

    

  先看中间,左左型和右右型,它们只需沿反方向旋转一次即可。左右型和右左型,先调整q和s,转变为上述两种类型。念一下中序遍历顺序,找找感觉。

   

二、代码实现

  AVL树是一棵二叉查找树,与普通二叉查找树不同的是,在插入和删除节点之后需要重新进行平衡,因此继承并重写普通二叉查找树的insert和remove方法,就可以实现一棵AVL树。代码里重点就是插入和删除怎样去维护平衡。

 // 涉及到的类前面博客都有
public class AVLTree<K, V> extends BinarySearchTree<K, V> implements IBinarySearchTree<K, V> {
@Override
public BSTNode<K, V> insert(K key, V value) {
// 先按bst的方式来插入,再调整
BSTNode<K, V> nnode = super.insert(key, value);
// 向上找到第一个不平衡的祖先p
BSTNode<K, V>[] pqs = firstUnbalance(nnode);
if (null != pqs) {// 不平衡
// System.out.println(pqs[0].key);
reBalance(pqs);
}
return nnode;
} /* 分pqs的形状,来调用左旋和右旋 */
private void reBalance(BSTNode<K, V>[] pqs) {
if (pqs == null)
return;
BSTNode p = pqs[0];// 不平衡的那个祖先
BSTNode q = pqs[1];// p的子节点
BSTNode s = pqs[2];// q的子节点 if (q.isRight() && s.isRight()) {// 右右型,以p为中心逆时针旋转
leftRotate(p, q); // 方法在前面的博客
// reBalance(firstUnbalance(q));
} else if (q.isLeft() && s.isLeft()) {// 左左型,以p为中心顺时针旋转
rightRotate(p, q);
// reBalance(firstUnbalance(q));
} else if (q.isLeft() && s.isRight()) {// 左右型
// q.right = s.left;
// if (s.left != null) {
// s.left.parent = q;
// s.left.isLeftChild = false;
// }
// q.parent = s;
// s.left = q;
// q.isLeftChild = true;
//
// s.parent = p;
// p.left = s;
// s.isLeftChild = true;
leftRotate(q, s);// q,s左旋,变为左左型
rightRotate(p, s);
// reBalance(firstUnbalance(s));
} else {// 右左型
// q.left = s.right;
// if (s.right != null) {
// s.right.parent = q;
// s.right.isLeftChild = true;
// }
// q.parent = s;
// s.right = q;
// q.isLeftChild = false;
//
// s.parent = p;
// p.right = s;
// s.isLeftChild = false;
rightRotate(q, s);
leftRotate(p, s);
// reBalance(firstUnbalance(s));
}
} private BSTNode<K, V>[] firstUnbalance(BSTNode<K, V> n) {
if (n == null)
return null;
BSTNode s = n;
BSTNode p = n.parent;
if (p == null)
return null;
BSTNode g = p.parent;
if (g == null)
return null;
if (unBalance(g)) {// 不平衡了
return new BSTNode[] { g, p, s };
} else {
return firstUnbalance(p);
} } @Override
public void remove(K key) {
BSTNode<K, V> node = super.lookupNode(key);
if (node == null)
return; BSTNode<K, V> parent = node.parent;
BSTNode<K, V> left = node.left;
BSTNode<K, V> right = node.right; if (left == null && right == null) {// leaf node
super.removeNode(node);
reBalance(parent); // 重新平衡
} else if (right == null) {// has only left child.左孩子替换自身
// if (node.isLeft()) {
// parent.left = left;
// left.parent = parent;
// } else {
// if (parent == null) {// node is root
// left.parent = null;
// root = left;
// } else {
// parent.right = left;
// left.isLeftChild = false;
// left.parent = parent;
// }
// }
BSTNode<K, V> predecessor = maxNode(left);
BSTNode<K, V> parentOfPredecessor = predecessor.parent;
super.removeNode(predecessor);
node.key = predecessor.key;
node.value = predecessor.value;
reBalance(parentOfPredecessor); } else {// 有右孩子,找到右子树的最小
BSTNode<K, V> successor = minNode(right);
BSTNode<K, V> parentOfSuccessor = successor.parent;
// minNode must be leaf node
super.removeNode(successor);
node.key = successor.key;
reBalance(parentOfSuccessor);
}
} private void reBalance(BSTNode<K, V> node) {
if (node == null)
return; BSTNode<K, V> right = node.right;
BSTNode<K, V> left = node.left;
int hOfRight = getHeight(right);
int hOfleft = getHeight(left); if (hOfRight - hOfleft >= 2) {// 右侧高
leftRotate(node, right);// 左旋
reBalance(right);
} else if (hOfRight - hOfleft <= -2) {
rightRotate(node, left);
reBalance(left);
} else {
reBalance(node.parent);
}
}
}

平衡二叉树(AVL)介绍及其实现的更多相关文章

  1. 数据结构与算法--从平衡二叉树(AVL)到红黑树

    数据结构与算法--从平衡二叉树(AVL)到红黑树 上节学习了二叉查找树.算法的性能取决于树的形状,而树的形状取决于插入键的顺序.在最好的情况下,n个结点的树是完全平衡的,如下图"最好情况&q ...

  2. Java 树结构实际应用 四(平衡二叉树/AVL树)

    平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: ...

  3. 二叉查找树(BST)、平衡二叉树(AVL树)(只有插入说明)

    二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点, ...

  4. 平衡二叉树AVL - 插入节点后旋转方法分析

    平衡二叉树 AVL( 发明者为Adel'son-Vel'skii 和 Landis)是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 首先我们知道,当插入一个节点,从此插入点到树根 ...

  5. 二叉查找树、平衡二叉树(AVL)、B+树、联合索引

    1. [定义] 二叉排序树(二拆查找树)中,左子树都比节点小,右子树都比节点大,递归定义. [性能] 二叉排序树的性能取决于二叉树的层数 最好的情况是 O(logn),存在于完全二叉排序树情况下,其访 ...

  6. 平衡二叉树AVL删除

    平衡二叉树的插入过程:http://www.cnblogs.com/hujunzheng/p/4665451.html 对于二叉平衡树的删除采用的是二叉排序树删除的思路: 假设被删结点是*p,其双亲是 ...

  7. 数据结构快速回顾——平衡二叉树 AVL (转)

    平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵 ...

  8. K:平衡二叉树(AVL)

    相关介绍:  二叉查找树的查找效率与二叉树的形状有关,对于按给定序列建立的二叉排序树,若其左.右子树均匀分布,则查找过程类似于有序表的二分查找,时间复杂度变为O(log2n).当若给定序列原来有序,则 ...

  9. 平衡二叉树,AVL树之代码篇

    看完了第一篇博客,相信大家对于平衡二叉树的插入调整以及删除调整已经有了一定的了解,下面,我们开始介绍代码部分. 首先,再次提一下使用的结构定义 typedef char KeyType; //关键字 ...

随机推荐

  1. shell 重定向 2>&1 2>/dev/null 理解笔记

    // 函数 输入输出重定向 1.函数 function hello(){ echo '1111' } ------- hello hello(){ // function 可以省略 echo '222 ...

  2. 微信小程序rich-text 文本首行缩进和图片居中

    微信小程序开发使用rich-text组件渲染html格式的代码,常常因为不能自定义css导致文本不能缩进,以及图片不能居中等问题,这里可以考虑使用js的replace方法,替换字符串,然后在渲染的同时 ...

  3. 小秘书智能app登录

    项目流程 项目图解 登录逻辑 建立项目 前端: 后端: Flask 数据库: Mongo 分工: 我负责的:

  4. 2018-2019-2 网络对抗技术 20165206 Exp3 免杀原理与实践

    - 2018-2019-2 网络对抗技术 20165206 Exp3 免杀原理与实践 - 实验任务 1 正确使用msf编码器,msfvenom生成如jar之类的其他文件,veil-evasion,自己 ...

  5. spring boot mybatis打印SQL语句

    在logback-spring.xml 文件中添加 <logger name="com.ibatis" level="DEBUG" /> <l ...

  6. Linux磁盘管理及LVM讲解

    硬盘接口 硬盘接口分为IDE.SATA.SCSI和SAS四种, IDE接口硬盘多用于家用产品中,也部分应用于服务器.不支持热添加,比较老. SCSI接口的硬盘则主要应用于服务器市场.linux. 而S ...

  7. 放球游戏B

    题目描述 校园里在上活动课,Red和Blue两位小朋友在玩一种游戏,他俩在一排N个格子里,自左到右地轮流放小球,每个格子只能放一个小球.第一个人只能放1个球,之后的人最多可以放前一个人的两倍数目的球, ...

  8. UOJ#435. 【集训队作业2018】Simple Tree 树链剖分,分块

    原文链接www.cnblogs.com/zhouzhendong/p/UOJ435.html 前言 分块题果然是我这种蒟蒻写不动的.由于种种原因,我写代码的时候打错了很多东西,最致命的是数组开小了.* ...

  9. P1522 牛的旅行 Cow Tours floyed

    题目描述 农民 John的农场里有很多牧区.有的路径连接一些特定的牧区.一片所有连通的牧区称为一个牧场.但是就目前而言,你能看到至少有两个牧区通过任何路径都不连通.这样,Farmer John就有多个 ...

  10. 利用 Saltstack 远程执行命令

    Saltstack的一个比较突出优势就是具备执行远程命令的功能. 操作方法与func (https://fedorahosted.org/func/)相似,可以帮助运维人员完成集中化的操作平台. ht ...