<题目链接>

题目大意:

给你n个数,现在让你选一些区间出来,对于每个区间中的每一种数,全部都只能出现在这个区间。 每个区间的价值为该区间不同的数的异或值之和,现在问你这n个数最大的价值是多少。

解题分析:
因为要同一种的所有数只能出现在同一区间,所以我们先对这$n$个数进行预处理,得到他们每种数的最左边的坐标和最右边的坐标。因为数据只有5000,所以状态可以比较暴力地更新,枚举最后一个异或的区间进行更新,用dp值来记录。

$dp[i]$表示$[1,i]$中异或值之和的最大值。第$i$个可以选或者不选,从这两种情况中选最大值。

不难想到,我们暴力枚举最后一个异或的区间,设区间左端点为$j$,区间端点为$i$。

转移方程就是:$dp[i]=max(dp[i],dp[j-1]+res)$    res表示$[j,i]$区间所有数的异或值

#include <bits/stdc++.h>
using namespace std; const int N = 5e3+;
int L[N],R[N];
int arr[N],dp[N],vis[N]; int main(){
int n;cin>>n;
for(int i=;i<=n;i++){
scanf("%d",&arr[i]);
if(!L[arr[i]])L[arr[i]]=i;
R[arr[i]]=i;
}
for(int i=;i<=n;i++){
dp[i]=dp[i-]; //首先默认不选这个数
memset(vis,,sizeof(vis));
int res=,le=1e9,ri=-;
for(int j=i;j>=;j--){ //枚举的区间左端点
le=min(le,L[arr[j]]);ri=max(ri,R[arr[j]]);
if(!vis[arr[j]])
res^=arr[j],vis[arr[j]]++;
if( ri>i || le<j )continue; //如果这个区间存在不符合要求的点,就不对该区间左端点的状态进行转移
dp[i]=max(dp[i],dp[j-]+res);
}
}
cout<<dp[n]<<endl;
}

Codeforces 811C Vladik and Memorable Trip (区间异或最大值) (线性DP)的更多相关文章

  1. CodeForces - 811C Vladik and Memorable Trip(dp)

    C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes input ...

  2. CodeForces 811C Vladik and Memorable Trip

    $dp$. 记录$dp[i]$表示以位置$i$为结尾的最大值. 枚举最后一段是哪一段,假设为$[j,i]$,那么可以用$max(dp[1]...dp[j-1]) + val[j][i]$去更新$dp[ ...

  3. 【dp】codeforces C. Vladik and Memorable Trip

    http://codeforces.com/contest/811/problem/C [题意] 给定一个自然数序列,在这个序列中找出几个不相交段,使得每个段的异或值之和相加最大. 段的异或值这样定义 ...

  4. cf 811c Vladik and Memorable Trip

    原题链接:http://codeforces.com/contest/811/problem/C 题意:将数组中的连续数字连成若干个“线段”(或者不连),其实就是区间.区间必须满足对于其中的任意数字, ...

  5. Codeforces 811 C. Vladik and Memorable Trip

    C. Vladik and Memorable Trip   time limit per test 2 seconds memory limit per test 256 megabytes inp ...

  6. CodeForce-811C Vladik and Memorable Trip(动态规划)

    Vladik and Memorable Trip CodeForces - 811C 有一个长度为 n 的数列,其中第 i 项为 ai. 现在需要你从这个数列中选出一些互不相交的区间,并且保证整个数 ...

  7. C. Vladik and Memorable Trip DP

    C. Vladik and Memorable Trip time limit per test 2 seconds memory limit per test 256 megabytes input ...

  8. C. Vladik and Memorable Trip 解析(思維、DP)

    Codeforce 811 C. Vladik and Memorable Trip 解析(思維.DP) 今天我們來看看CF811C 題目連結 題目 給你一個數列,一個區段的數列的值是區段內所有相異數 ...

  9. Codeforces Round #416 (Div. 2) C. Vladik and Memorable Trip

    http://codeforces.com/contest/811/problem/C 题意: 给出一行序列,现在要选出一些区间来(不必全部选完),但是相同的数必须出现在同一个区间中,也就是说该数要么 ...

随机推荐

  1. 51nod 1318 最大公约数与最小公倍数方程组(2-SAT)

    题意 给你 \(n\) 个元素,\(m\) 个方程. 每个方程形如 \[ \begin{align} \gcd(x_i, y_i)=c_i\\ \mathrm{lcm}(x_i,y_i) = d_i ...

  2. 【JVM】JVM垃圾收集器、垃圾收集算法、无用对象

    Java 常见的垃圾收集器有哪些 实际上,垃圾收集器(GC,Garbage Collector)是和具体 JVM 实现紧密相关的,不同厂商(IBM.Oracle),不同版本的JVM,提供的选择也不同. ...

  3. FWT快速沃尔什变换学习笔记

    FWT快速沃尔什变换学习笔记 1.FWT用来干啥啊 回忆一下多项式的卷积\(C_k=\sum_{i+j=k}A_i*B_j\) 我们可以用\(FFT\)来做. 甚至在一些特殊情况下,我们\(C_k=\ ...

  4. Yii2的Gridview应用技巧补充

    Yii2框架下的Gridview通常用来展示一张DB表中的数据,十分方便.这里只说一下经常要用到的一些小技巧,其实大多数官方文档都是有的,只是有可能需要在多个文档里. 自动创建的gridview示例. ...

  5. 休眠(1):sleep和wait的区别

    1.这两个方法来自不同的类分别是,sleep来自Thread类,和wait来自Object类. 2.sleep是Thread的静态类方法,谁调用的谁去睡觉,即使在a线程里调用了b的sleep方法,实际 ...

  6. GoLang-Rpc编程

    Rpc定义: RPC(Remote Procedure Call,远程过程调用)是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络细节的应用程序通信协议. RPC协议构建于TCP或UDP, ...

  7. Hadoop基础-镜像文件(fsimage)和编辑日志(edits)

    Hadoop基础-镜像文件(fsimage)和编辑日志(edits) 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.查看日志镜像文件(如:fsimage_00000000000 ...

  8. JavaScript对象 Object类型基础

    前言 JavaScript 对象是整个语言学习的一个难点.本文主要带大家入门学习Object知识 对象定义 javascript的基本数据类型包括undefined.null.boolean.stri ...

  9. SpringBoot系列: url重定向和转发

    Web UI项目中, 很多 Spring controller 视图函数直接返回 html 页面, 还有一些视图函数是要重定向或转发到其他的 url 上. redirect 和 forward的区别: ...

  10. 老是上不了 google scholar...

    这段时间老是上不了 google scholar... 下载了最新的 host 也不行. 难道真是电脑有问题了? 网络有时也老是掉... 也好. 多休息休息. 人生难得几回清闲. 马上就要开学咯. 课 ...