原文链接www.cnblogs.com/zhouzhendong/p/UOJ348.html

前言

第一次知道子集卷积可以自己卷自己。

题解

这是一道子集卷积模板题。

设 $sum[S]$ 表示点集 S 的点权和。

设 $f[S]$ 表示对点集 S 进行州区划分得到的答案,定义 $g[S]$ 在点集 S 合法时为 $(sum[S])^p$,不合法时为 0 。

$$f[S] = \frac{1}{(sum[S])^p}\sum_{T\subsetneq S} f[T]g[S-T]$$

这东西是个子集卷积的形式。

但是在卷的时候要调用自己。

那怎么办?

一边做子集卷积,一边得出新答案。

具体地:枚举一下集合大小 S ,每次通过之前的结果做卷积求出当前集合大小的所有集合的答案。

直接保留 FMT 后的结果,方便计算、降低时间复杂度。

具体细节见代码。

时间复杂度 $O(n^22^n)$ 。

代码

#pragma GCC optimize("Ofast","inline")
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=23,S=1<<21,mod=998244353;
const ULL Bmod=16ULL*mod*mod;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int n,m,s,p;
vector <int> e[N];
int w[N];
int cnt1[S],sum[S],f[S];
int g[N][N];
int u[N][S],v[N][S];
int check(int s){
static int vis[N],in[N],q[N],head,tail,x;
if (!s)
return 0;
clr(vis),clr(in);
int fir=-1;
For(i,0,n-1)
if (s>>i&1){
fir=i;
break;
}
head=tail=0;
q[++tail]=fir,vis[fir]=1;
while (head<tail){
x=q[++head];
for (auto y : e[x])
if (s>>y&1){
in[y]^=1;
if (!vis[y])
vis[y]=1,q[++tail]=y;
}
}
if (tail!=cnt1[s])
return 1;
For(i,0,n-1)
if (in[i])
return 1;
return 0;
}
void FMT(int *a){
For(i,0,n-1)
For(j,0,s-1)
if (j>>i&1)
Add(a[j],a[j^1<<i]);
}
void IFMT(int *a){
For(i,0,n-1)
For(j,0,s-1)
if (j>>i&1)
Del(a[j],a[j^1<<i]);
}
int main(){
n=read(),m=read(),p=read();
s=1<<n;
clr(g);
For(i,1,m){
int x=read()-1,y=read()-1;
e[x].pb(y),e[y].pb(x);
}
For(i,0,n-1)
w[i]=read();
For(i,0,s-1){
For(j,0,n-1)
if (i>>j&1){
cnt1[i]++;
sum[i]+=w[j];
}
f[i]=check(i);
sum[i]=Pow(sum[i],p);
if (f[i])
u[cnt1[i]][i]=sum[i];
}
For(i,0,n)
FMT(u[i]);
v[0][0]=1;
FMT(v[0]);
For(i,1,n){
For(k,0,s-1){
ULL tmp=0;
For(j,0,i-1){
tmp+=(LL)v[j][k]*u[i-j][k];
if (tmp>=Bmod)
tmp-=Bmod;
}
v[i][k]=tmp%mod;
}
IFMT(v[i]);
For(k,0,s-1)
if (cnt1[k]==i)
v[i][k]=(LL)v[i][k]*Pow(sum[k],mod-2)%mod;
else
v[i][k]=0;
FMT(v[i]);
}
IFMT(v[n]);
cout<<v[n][s-1]<<endl;
return 0;
}

  

UOJ#348. 【WC2018】州区划分的更多相关文章

  1. [UOJ#348][WC2018]州区划分

    [UOJ#348][WC2018]州区划分 试题描述 小 \(S\) 现在拥有 \(n\) 座城市,第ii座城市的人口为 \(w_i\),城市与城市之间可能有双向道路相连. 现在小 \(S\) 要将这 ...

  2. [WC2018]州区划分——FWT+DP+FST

    题目链接: [WC2018]州区划分 题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路.对于一种划分方案,第i个部分的 ...

  3. [WC2018]州区划分

    [WC2018]州区划分 注意审题: 1.有序选择 2.若干个州 3.贡献是州满意度的乘积 枚举最后一个州是哪一个,合法时候贡献sum[s]^p,否则贡献0 存在欧拉回路:每个点都是偶度数,且图连通( ...

  4. [WC2018]州区划分(FWT,FST)

    [WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考 ...

  5. P4221 [WC2018]州区划分 无向图欧拉回路 FST FWT

    LINK:州区划分 把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路. 充要条件有两个 联通 每个点度数为偶数. 预处理出所有状态. 然后设\(f_i\)表示组成情况为i的 ...

  6. uoj#348/洛谷P4221 [WC2018]州区划分(FWT)

    传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷 ...

  7. [WC2018]州区划分(FWT)

    题目描述 题解 这道题的思路感觉很妙. 题目中有一个很奇怪的不合法条件,貌似和后面做题没有什么关系,所以我们先得搞掉它. 也就是判断一个点集是否合法,也就是判断这个点集是否存在欧拉回路. 如果存在欧拉 ...

  8. Luogu4221 WC2018州区划分(状压dp+FWT)

    合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方 ...

  9. LOJ2340 [WC2018] 州区划分 【FMT】【欧拉回路】

    题目分析: 这题是WC的题??? 令 $g[S] = (\sum_{x \in S}w_x)^p$ $h[S] = g[S]$如果$S$不是欧拉回路 $d[S] = \frac{f[S]}{g[All ...

  10. [WC2018]州区划分(状压DP+FWT/FMT)

    很裸的子集反演模板题,套上一些莫名其妙的外衣. 先预处理每个集合是否合法,再作显然的状压DP.然后发现可以写成子集反演的形式,直接套模板即可. 子集反演可以看这里. 子集反演的过程就是多设一维代表集合 ...

随机推荐

  1. [源码分析]AbstractStringBuilder

    [源码分析]AbstractStringBuilder Java中, AbstractStringBuilder是 StringBuilder 和 StringBuffer 的父类. 所以了解Stri ...

  2. work behind corp proxy

    =================================proxy 的写法=================================一般写法是: http://my.proxy.ad ...

  3. express session 和 socketio session关联

    express session http是没有状态的协议, 需要web框架自己实现会话和会话管理工作. express框架有session插件可以使用. 见如下介绍: https://www.tuto ...

  4. JAVA进阶18

    间歇性混吃等死,持续性踌躇满志系列-------------第18天 1.飞机游戏小项目 ①创建窗口 package cn.xfj.game; import javax.swing.*; import ...

  5. 在NOARCHIVELOG和ARCHIVELOG模式之间选择

    本节介绍在选择以NOARCHIVELOG或ARCHIVELOG模式运行数据库时必须考虑的问题,并包含以下主题: 在NOARCHIVELOG模式下运行数据库 在ARCHIVELOG模式下运行数据库 是否 ...

  6. Dubbo+Nacos做注册中心和配置中心

    项目结构 相关代码 EchoService public interface EchoService { String echo(String msg); } DefaultEchoService @ ...

  7. 如何获取AWS的Access Key ID 和 Secret Access Key (Unable to find credentials)

    获取AWS的Access Key ID 和 Secret Access Key 是你可以访问AWS的依据,比如S3的“使用预签名 URL 上传对象”. 1.登录AWS控制台 2.在“AWS servi ...

  8. linux常见故障处理

    目录 一. 文件和目录类 1.1 File exist 文件已经存在 1.2 No such file or directory 没有这个文件或目录(这个东西不存在) 1.3 command not ...

  9. MySQL 的安装与使用(一)

    一.Windows 上安装 MySQL 1.Windows 上安装 MySQL 相对来说会较为简单,地那就链接 https://cdn.mysql.com//Downloads/MySQL-8.0/m ...

  10. 小米众筹新品---8H凉感慢回弹记忆绵枕 99元 上手开箱图

    在众目睽睽之下,商城终于成了杂货铺 众筹发布了第98期新品——8H凉感慢回弹记忆绵枕H1,售价为99元,主打舒适凉感,抗菌吸湿,三曲线护颈设计,3~5秒慢回弹. 本着程序员的读书历程:x 语言入门 — ...