UOJ#348. 【WC2018】州区划分
原文链接www.cnblogs.com/zhouzhendong/p/UOJ348.html
前言
第一次知道子集卷积可以自己卷自己。
题解
这是一道子集卷积模板题。
设 $sum[S]$ 表示点集 S 的点权和。
设 $f[S]$ 表示对点集 S 进行州区划分得到的答案,定义 $g[S]$ 在点集 S 合法时为 $(sum[S])^p$,不合法时为 0 。
则
$$f[S] = \frac{1}{(sum[S])^p}\sum_{T\subsetneq S} f[T]g[S-T]$$
这东西是个子集卷积的形式。
但是在卷的时候要调用自己。
那怎么办?
一边做子集卷积,一边得出新答案。
具体地:枚举一下集合大小 S ,每次通过之前的结果做卷积求出当前集合大小的所有集合的答案。
直接保留 FMT 后的结果,方便计算、降低时间复杂度。
具体细节见代码。
时间复杂度 $O(n^22^n)$ 。
代码
#pragma GCC optimize("Ofast","inline")
#include <bits/stdc++.h>
#define clr(x) memset(x,0,sizeof (x))
#define For(i,a,b) for (int i=a;i<=b;i++)
#define Fod(i,b,a) for (int i=b;i>=a;i--)
#define pb(x) push_back(x)
#define mp(x,y) make_pair(x,y)
#define fi first
#define se second
#define _SEED_ ('C'+'L'+'Y'+'A'+'K'+'I'+'O'+'I')
#define outval(x) printf(#x" = %d\n",x)
#define outvec(x) printf("vec "#x" = ");for (auto _v : x)printf("%d ",_v);puts("")
#define outtag(x) puts("----------"#x"----------")
#define outarr(a,L,R) printf(#a"[%d...%d] = ",L,R);\
For(_v2,L,R)printf("%d ",a[_v2]);puts("");
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef vector <int> vi;
LL read(){
LL x=0,f=0;
char ch=getchar();
while (!isdigit(ch))
f|=ch=='-',ch=getchar();
while (isdigit(ch))
x=(x<<1)+(x<<3)+(ch^48),ch=getchar();
return f?-x:x;
}
const int N=23,S=1<<21,mod=998244353;
const ULL Bmod=16ULL*mod*mod;
int Pow(int x,int y){
int ans=1;
for (;y;y>>=1,x=(LL)x*x%mod)
if (y&1)
ans=(LL)ans*x%mod;
return ans;
}
void Add(int &x,int y){
if ((x+=y)>=mod)
x-=mod;
}
void Del(int &x,int y){
if ((x-=y)<0)
x+=mod;
}
int n,m,s,p;
vector <int> e[N];
int w[N];
int cnt1[S],sum[S],f[S];
int g[N][N];
int u[N][S],v[N][S];
int check(int s){
static int vis[N],in[N],q[N],head,tail,x;
if (!s)
return 0;
clr(vis),clr(in);
int fir=-1;
For(i,0,n-1)
if (s>>i&1){
fir=i;
break;
}
head=tail=0;
q[++tail]=fir,vis[fir]=1;
while (head<tail){
x=q[++head];
for (auto y : e[x])
if (s>>y&1){
in[y]^=1;
if (!vis[y])
vis[y]=1,q[++tail]=y;
}
}
if (tail!=cnt1[s])
return 1;
For(i,0,n-1)
if (in[i])
return 1;
return 0;
}
void FMT(int *a){
For(i,0,n-1)
For(j,0,s-1)
if (j>>i&1)
Add(a[j],a[j^1<<i]);
}
void IFMT(int *a){
For(i,0,n-1)
For(j,0,s-1)
if (j>>i&1)
Del(a[j],a[j^1<<i]);
}
int main(){
n=read(),m=read(),p=read();
s=1<<n;
clr(g);
For(i,1,m){
int x=read()-1,y=read()-1;
e[x].pb(y),e[y].pb(x);
}
For(i,0,n-1)
w[i]=read();
For(i,0,s-1){
For(j,0,n-1)
if (i>>j&1){
cnt1[i]++;
sum[i]+=w[j];
}
f[i]=check(i);
sum[i]=Pow(sum[i],p);
if (f[i])
u[cnt1[i]][i]=sum[i];
}
For(i,0,n)
FMT(u[i]);
v[0][0]=1;
FMT(v[0]);
For(i,1,n){
For(k,0,s-1){
ULL tmp=0;
For(j,0,i-1){
tmp+=(LL)v[j][k]*u[i-j][k];
if (tmp>=Bmod)
tmp-=Bmod;
}
v[i][k]=tmp%mod;
}
IFMT(v[i]);
For(k,0,s-1)
if (cnt1[k]==i)
v[i][k]=(LL)v[i][k]*Pow(sum[k],mod-2)%mod;
else
v[i][k]=0;
FMT(v[i]);
}
IFMT(v[n]);
cout<<v[n][s-1]<<endl;
return 0;
}
UOJ#348. 【WC2018】州区划分的更多相关文章
- [UOJ#348][WC2018]州区划分
[UOJ#348][WC2018]州区划分 试题描述 小 \(S\) 现在拥有 \(n\) 座城市,第ii座城市的人口为 \(w_i\),城市与城市之间可能有双向道路相连. 现在小 \(S\) 要将这 ...
- [WC2018]州区划分——FWT+DP+FST
题目链接: [WC2018]州区划分 题目大意:给n个点的一个无向图,点有点权,要求将这n个点划分成若干个部分,每部分合法当且仅当这部分中所有点之间的边不能构成欧拉回路.对于一种划分方案,第i个部分的 ...
- [WC2018]州区划分
[WC2018]州区划分 注意审题: 1.有序选择 2.若干个州 3.贡献是州满意度的乘积 枚举最后一个州是哪一个,合法时候贡献sum[s]^p,否则贡献0 存在欧拉回路:每个点都是偶度数,且图连通( ...
- [WC2018]州区划分(FWT,FST)
[WC2018]州区划分(FWT,FST) Luogu loj 题解时间 经典FST. 在此之前似乎用到FST的题并不多? 首先预处理一个子集是不是欧拉回路很简单,判断是否连通且度数均为偶数即可. 考 ...
- P4221 [WC2018]州区划分 无向图欧拉回路 FST FWT
LINK:州区划分 把题目中四个条件进行规约 容易想到不合法当前仅当当前状态是一个无向图欧拉回路. 充要条件有两个 联通 每个点度数为偶数. 预处理出所有状态. 然后设\(f_i\)表示组成情况为i的 ...
- uoj#348/洛谷P4221 [WC2018]州区划分(FWT)
传送门(uoj) 传送门(洛谷) 全世界都会子集卷积就咱不会--全世界都在写\(FMT\)就咱只会\(FWT\)-- 前置芝士 或运算\(FWT\)或者\(FMT\) 左转洛谷模板区,包教包会 子集卷 ...
- [WC2018]州区划分(FWT)
题目描述 题解 这道题的思路感觉很妙. 题目中有一个很奇怪的不合法条件,貌似和后面做题没有什么关系,所以我们先得搞掉它. 也就是判断一个点集是否合法,也就是判断这个点集是否存在欧拉回路. 如果存在欧拉 ...
- Luogu4221 WC2018州区划分(状压dp+FWT)
合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方 ...
- LOJ2340 [WC2018] 州区划分 【FMT】【欧拉回路】
题目分析: 这题是WC的题??? 令 $g[S] = (\sum_{x \in S}w_x)^p$ $h[S] = g[S]$如果$S$不是欧拉回路 $d[S] = \frac{f[S]}{g[All ...
- [WC2018]州区划分(状压DP+FWT/FMT)
很裸的子集反演模板题,套上一些莫名其妙的外衣. 先预处理每个集合是否合法,再作显然的状压DP.然后发现可以写成子集反演的形式,直接套模板即可. 子集反演可以看这里. 子集反演的过程就是多设一维代表集合 ...
随机推荐
- [源码分析]AbstractStringBuilder
[源码分析]AbstractStringBuilder Java中, AbstractStringBuilder是 StringBuilder 和 StringBuffer 的父类. 所以了解Stri ...
- work behind corp proxy
=================================proxy 的写法=================================一般写法是: http://my.proxy.ad ...
- express session 和 socketio session关联
express session http是没有状态的协议, 需要web框架自己实现会话和会话管理工作. express框架有session插件可以使用. 见如下介绍: https://www.tuto ...
- JAVA进阶18
间歇性混吃等死,持续性踌躇满志系列-------------第18天 1.飞机游戏小项目 ①创建窗口 package cn.xfj.game; import javax.swing.*; import ...
- 在NOARCHIVELOG和ARCHIVELOG模式之间选择
本节介绍在选择以NOARCHIVELOG或ARCHIVELOG模式运行数据库时必须考虑的问题,并包含以下主题: 在NOARCHIVELOG模式下运行数据库 在ARCHIVELOG模式下运行数据库 是否 ...
- Dubbo+Nacos做注册中心和配置中心
项目结构 相关代码 EchoService public interface EchoService { String echo(String msg); } DefaultEchoService @ ...
- 如何获取AWS的Access Key ID 和 Secret Access Key (Unable to find credentials)
获取AWS的Access Key ID 和 Secret Access Key 是你可以访问AWS的依据,比如S3的“使用预签名 URL 上传对象”. 1.登录AWS控制台 2.在“AWS servi ...
- linux常见故障处理
目录 一. 文件和目录类 1.1 File exist 文件已经存在 1.2 No such file or directory 没有这个文件或目录(这个东西不存在) 1.3 command not ...
- MySQL 的安装与使用(一)
一.Windows 上安装 MySQL 1.Windows 上安装 MySQL 相对来说会较为简单,地那就链接 https://cdn.mysql.com//Downloads/MySQL-8.0/m ...
- 小米众筹新品---8H凉感慢回弹记忆绵枕 99元 上手开箱图
在众目睽睽之下,商城终于成了杂货铺 众筹发布了第98期新品——8H凉感慢回弹记忆绵枕H1,售价为99元,主打舒适凉感,抗菌吸湿,三曲线护颈设计,3~5秒慢回弹. 本着程序员的读书历程:x 语言入门 — ...