很好的根号算法(这种思想好像叫根号分治?)

首先,暴力是Ο(n2)的

考虑预处理:

for(p=1;p<=n;p++) //枚举模数
    ans[p][i%p]+=value[i];

  看似很好但还是Ο(n2),空间也用的多

所以想到√n预处理的方法 ,p>√n就暴力(我觉得像是一种平衡的思想?)

总的复杂度Ο((n+m)√n)

#include<bits/stdc++.h>
using namespace std;
const int N=150007;
int a[N],n,m,ans[400][400];
int main(){
	cin>>n>>m;
	int t=sqrt(n);
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
		for(int j=1;j<=t;j++)
			ans[j][i%j]+=a[i];
	}
	for(int i=1;i<=m;i++){
		char ch[5];
		int p,x;
		scanf("%s%d%d",ch,&p,&x);
		if(ch[0]=='A'){
			if(p<=t) printf("%d\n",ans[p][x]);
			else {
				int anss=0;
				if(x==0)x=p;
				for(int j=x;j<=n;j+=p){//之前这里又手残打错了woc调了半天
					anss+=a[j];
				}
			printf("%d\n",anss);
			}
		}
		else {
			for(int j=1;j<=t;j++){
				ans[j][p%j]+=x;
				ans[j][p%j]-=a[p];
			}
			a[p]=x;
		}
	}
	return 0;
}

  

P3396 哈希冲突的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  4. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  5. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

  6. 洛谷P3396哈希冲突

    传送门啦 非常神奇的分块大法. 这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $ 我们设数组 $ f[i][j] $ 表示 ...

  7. 洛谷P3396 哈希冲突(分块)

    传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...

  8. 【Luogu】P3396哈希冲突(根号算法)

    题目链接 根号算法真的是博大精深啊……明明是暴力但复杂度就是能过 这也太强了吧!!! 预处理出p<=sqrt(n)的所有情况,耗时n根n 查询: 如果p<=根n,O1查表 如果p>= ...

  9. luogu P3396 哈希冲突(分块?)

    我们可以维护一个\(f[i][j]\)代表%\(i\)意义下得\(j\)的答案.然后维护就炸了. 先设\(x=\sqrt{n}\)然后我们发现,当\(i>x\)时我们直接暴力复杂度为\(O(x) ...

随机推荐

  1. zabbix调用api检索方法

    环境 zabbix:172.16.128.16:zabbix_web:172.16.16.16/zabbix 用户名:Admin 密码:zabbix 获取的数据仅做参考,以Linux发送HTTP的PO ...

  2. asp.net FromBody接收不到参数的解决方法

    今天改一个前端框架(angularjs,不兼容ie内核,需要修改),后台框架是已经写好了的,不用修改. 接口接收参数如下: [HttpPost] public async Task<Schedu ...

  3. python 提取pdf文字

    安装pdfminer 库 windows 下安装pdfminer3k pip install pdfminer3k Liunx 下安装pdfminer pip install pdfminer 代码 ...

  4. SpringBoot开发案例之打造私有云网盘

    前言 最近在做工作流的事情,正好有个需求,要添加一个附件上传的功能,曾找过不少上传插件,都不是特别满意.无意中发现一个很好用的开源web文件管理器插件 elfinder,功能比较完善,社区也很活跃,还 ...

  5. 【续】5年后,我们为什么要从 Entity Framework 转到 Dapper 工具?

    前言 上一篇文章收获了 140 多条评论,这是我们始料未及的. 向来有争议的话题都是公说公的理,婆说婆的理,Entity Framework的爱好者对此可以说是嗤之以鼻,不屑一顾,而Dapper爱好者 ...

  6. 菜鸟学python之大数据的初认识

    这次作业的要求来自于:https://edu.cnblogs.com/campus/gzcc/GZCC-16SE1/homework/2639 1.这些分析所采用数据来源是什么? 国家数据库:中国铁路 ...

  7. 我的工具:Db SQL Monitor

    SQL Monitor 是一款界面简洁.绿色小巧的sql活动监视器,它能够帮助用户对 SQL Server 运行进程和Job进行实时监视,您可以查看当前执行的SQL/命令并终止. 工具下载地址:htt ...

  8. 【git】git hello world

    以前不怎么会用. http://blog.sina.com.cn/s/blog_1485511700102xdig.html git add 文件夹/            添加整个文件夹及内容 gi ...

  9. Vuex 存储||获取后台接口数据

    如果你对 Vuex 有一定的了解的话呢,可以继续这一篇的学习了,如果没有的话, 建议先看一看我的上一篇 Vuex基础:地址在下面 Vuex的详解与使用 Vuex刷新数据不丢失 这篇接着上一篇: 这篇将 ...

  10. 2019-04-16 SpringMVC 学习笔记

    1. 配置过程: ① 配置servlet(org.springframework.web.servlet.DiapatcherServlet)拦截请求 ② SpringMVC的默认配置文件:servl ...