很好的根号算法(这种思想好像叫根号分治?)

首先,暴力是Ο(n2)的

考虑预处理:

for(p=1;p<=n;p++) //枚举模数
    ans[p][i%p]+=value[i];

  看似很好但还是Ο(n2),空间也用的多

所以想到√n预处理的方法 ,p>√n就暴力(我觉得像是一种平衡的思想?)

总的复杂度Ο((n+m)√n)

#include<bits/stdc++.h>
using namespace std;
const int N=150007;
int a[N],n,m,ans[400][400];
int main(){
	cin>>n>>m;
	int t=sqrt(n);
	for(int i=1;i<=n;i++){
		scanf("%d",&a[i]);
		for(int j=1;j<=t;j++)
			ans[j][i%j]+=a[i];
	}
	for(int i=1;i<=m;i++){
		char ch[5];
		int p,x;
		scanf("%s%d%d",ch,&p,&x);
		if(ch[0]=='A'){
			if(p<=t) printf("%d\n",ans[p][x]);
			else {
				int anss=0;
				if(x==0)x=p;
				for(int j=x;j<=n;j+=p){//之前这里又手残打错了woc调了半天
					anss+=a[j];
				}
			printf("%d\n",anss);
			}
		}
		else {
			for(int j=1;j<=t;j++){
				ans[j][p%j]+=x;
				ans[j][p%j]-=a[p];
			}
			a[p]=x;
		}
	}
	return 0;
}

  

P3396 哈希冲突的更多相关文章

  1. 洛谷P3396 哈希冲突 (分块)

    洛谷P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣. ...

  2. 洛谷 P3396 哈希冲突 解题报告

    P3396 哈希冲突 题目背景 此题约为NOIP提高组Day2T2难度. 题目描述 众所周知,模数的hash会产生冲突.例如,如果模的数p=7,那么4和11便冲突了. B君对hash冲突很感兴趣.他会 ...

  3. P3396 哈希冲突(思维+方块)

    题目 P3396 哈希冲突 做法 预处理模数\([1,\sqrt{n}]\)的内存池,\(O(n\sqrt{n})\) 查询模数在范围里则直接输出,否则模拟\(O(m\sqrt{n})\) 修改则遍历 ...

  4. 洛谷P3396 哈希冲突

    分块还真是应用广泛啊...... 题意:求 解:以n0.5为界. 当p小于n0.5的时候,直接用p²大小的数组储存答案. 预处理n1.5,修改n0.5. 当p大于n0.5的时候,直接按照定义计算,复杂 ...

  5. p3396 哈希冲突(暴力)

    想了好久,没想到优秀的解法,结果是个暴力大吃一静.jpg 分类讨论,预处理\(p\le \sqrt{n}\) 的情况,其他直接暴力,复杂度\(O(n \sqrt{n} )\) #include < ...

  6. 洛谷P3396哈希冲突

    传送门啦 非常神奇的分块大法. 这个题一看数据范围,觉得不小,但是如果我们以 $ \sqrt(x) $ 为界限,数据范围就降到了 $ x < 400 $ 我们设数组 $ f[i][j] $ 表示 ...

  7. 洛谷P3396 哈希冲突(分块)

    传送门 题解在此,讲的蛮清楚的->这里 我就贴个代码 //minamoto #include<iostream> #include<cstdio> #include< ...

  8. 【Luogu】P3396哈希冲突(根号算法)

    题目链接 根号算法真的是博大精深啊……明明是暴力但复杂度就是能过 这也太强了吧!!! 预处理出p<=sqrt(n)的所有情况,耗时n根n 查询: 如果p<=根n,O1查表 如果p>= ...

  9. luogu P3396 哈希冲突(分块?)

    我们可以维护一个\(f[i][j]\)代表%\(i\)意义下得\(j\)的答案.然后维护就炸了. 先设\(x=\sqrt{n}\)然后我们发现,当\(i>x\)时我们直接暴力复杂度为\(O(x) ...

随机推荐

  1. Windonws基本命令手册

    1. gpedit.msc-----组策略  2. sndrec32-------录音机 3. Nslookup-------IP地址侦测器 4. explorer-------打开资源管理器 5. ...

  2. c++字节对齐编译器指令#pragma

    第一种 #pragma pack(push, 1) // 先把当前对齐设置压栈,再设置为1字节对齐 struct S { char a; ]; }; #pragma pack(pop) // 恢复先前 ...

  3. java 根据ip获取地区信息(淘宝和新浪)

    package com.test; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStr ...

  4. vps install ss

    1.install ss yum install python-setuptools easy_install pip pip install shadowsocks 2.config ss (sin ...

  5. 前端开发 JavaScript 规范文档

    一,规范目的 为提高团队协作效率,便于前端后期优化维护,输出高质量的文档. 二.基本准则 符合web标准,结构表现行为分离,兼容性优良.页面性能方面,代码要求简洁明了有序, 尽可能的减小服务器负载,保 ...

  6. 如何在sqlite3连接中创建并调用自定义函数

    #!/user/bin/env python # @Time :2018/6/8 14:44 # @Author :PGIDYSQ #@File :CreateFunTest.py '''如何在sql ...

  7. MongoDB系列:三、springboot整合mongoDB的简单demo

    在上篇 MongoDB常用操作练习 中,我们在命令提示符窗口使用简单的mongdb的方法操作数据库,实现增删改查及其他的功能.在本篇中,我们将mongodb与spring boot进行整合,也就是在j ...

  8. 巧妙使用excel 实现行转列

    1. 本来想通过写sql的方式来实现简单的行转列 但是 时间要求很紧 (主要是自己懒 并且sql写的不好. ) 通过同事提醒 以及百度 找到一个很简单的方法,通过excel 来实现. 2. 具体操作步 ...

  9. CentOS 安装 Ansible 以及连接Windows server的办法

    1. CentOS机器上面按住那ansible yum install ansible 2. 安装 pywinrm  如果不安装 这个的话  ansible 会提示 没有 winrm 模块 注意需要先 ...

  10. celery 和 haystack

    celery  是分布式异步框架 haystack  是全文检索  只能在Django中用. 一.什么是celery?     ---->它是Python写的,所以只支持Python使用.但是消 ...