文本分类实战(五)—— Bi-LSTM + Attention模型
1 大纲概述
文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类。总共有以下系列:
jupyter notebook代码均在textClassifier仓库中,python代码在NLP-Project中的text_classfier中。
2 数据集
数据集为IMDB 电影影评,总共有三个数据文件,在/data/rawData目录下,包括unlabeledTrainData.tsv,labeledTrainData.tsv,testData.tsv。在进行文本分类时需要有标签的数据(labeledTrainData),数据预处理如文本分类实战(一)—— word2vec预训练词向量中一样,预处理后的文件为/data/preprocess/labeledTrain.csv。
3 Bi-LSTM + Attention 模型
Bi-LSTM + Attention模型来源于论文Attention-Based Bidirectional Long Short-Term Memory Networks for Relation Classification。关于Attention的介绍见这篇。
Bi-LSTM + Attention 就是在Bi-LSTM的模型上加入Attention层,在Bi-LSTM中我们会用最后一个时序的输出向量 作为特征向量,然后进行softmax分类。Attention是先计算每个时序的权重,然后将所有时序 的向量进行加权和作为特征向量,然后进行softmax分类。在实验中,加上Attention确实对结果有所提升。其模型结构如下图:
4 参数配置
import os
import csv
import time
import datetime
import random
import json import warnings
from collections import Counter
from math import sqrt import gensim
import pandas as pd
import numpy as np
import tensorflow as tf
from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score
warnings.filterwarnings("ignore")
# 配置参数 class TrainingConfig(object):
epoches = 4
evaluateEvery = 100
checkpointEvery = 100
learningRate = 0.001 class ModelConfig(object):
embeddingSize = 200 hiddenSizes = [256, 128] # LSTM结构的神经元个数 dropoutKeepProb = 0.5
l2RegLambda = 0.0 class Config(object):
sequenceLength = 200 # 取了所有序列长度的均值
batchSize = 128 dataSource = "../data/preProcess/labeledTrain.csv" stopWordSource = "../data/english" numClasses = 1 # 二分类设置为1,多分类设置为类别的数目 rate = 0.8 # 训练集的比例 training = TrainingConfig() model = ModelConfig() # 实例化配置参数对象
config = Config()
5 生成训练数据
1)将数据加载进来,将句子分割成词表示,并去除低频词和停用词。
2)将词映射成索引表示,构建词汇-索引映射表,并保存成json的数据格式,之后做inference时可以用到。(注意,有的词可能不在word2vec的预训练词向量中,这种词直接用UNK表示)
3)从预训练的词向量模型中读取出词向量,作为初始化值输入到模型中。
4)将数据集分割成训练集和测试集
# 数据预处理的类,生成训练集和测试集 class Dataset(object):
def __init__(self, config):
self.config = config
self._dataSource = config.dataSource
self._stopWordSource = config.stopWordSource self._sequenceLength = config.sequenceLength # 每条输入的序列处理为定长
self._embeddingSize = config.model.embeddingSize
self._batchSize = config.batchSize
self._rate = config.rate self._stopWordDict = {} self.trainReviews = []
self.trainLabels = [] self.evalReviews = []
self.evalLabels = [] self.wordEmbedding =None self.labelList = [] def _readData(self, filePath):
"""
从csv文件中读取数据集
""" df = pd.read_csv(filePath) if self.config.numClasses == 1:
labels = df["sentiment"].tolist()
elif self.config.numClasses > 1:
labels = df["rate"].tolist() review = df["review"].tolist()
reviews = [line.strip().split() for line in review] return reviews, labels def _labelToIndex(self, labels, label2idx):
"""
将标签转换成索引表示
"""
labelIds = [label2idx[label] for label in labels]
return labelIds def _wordToIndex(self, reviews, word2idx):
"""
将词转换成索引
"""
reviewIds = [[word2idx.get(item, word2idx["UNK"]) for item in review] for review in reviews]
return reviewIds def _genTrainEvalData(self, x, y, word2idx, rate):
"""
生成训练集和验证集
"""
reviews = []
for review in x:
if len(review) >= self._sequenceLength:
reviews.append(review[:self._sequenceLength])
else:
reviews.append(review + [word2idx["PAD"]] * (self._sequenceLength - len(review))) trainIndex = int(len(x) * rate) trainReviews = np.asarray(reviews[:trainIndex], dtype="int64")
trainLabels = np.array(y[:trainIndex], dtype="float32") evalReviews = np.asarray(reviews[trainIndex:], dtype="int64")
evalLabels = np.array(y[trainIndex:], dtype="float32") return trainReviews, trainLabels, evalReviews, evalLabels def _genVocabulary(self, reviews, labels):
"""
生成词向量和词汇-索引映射字典,可以用全数据集
""" allWords = [word for review in reviews for word in review] # 去掉停用词
subWords = [word for word in allWords if word not in self.stopWordDict] wordCount = Counter(subWords) # 统计词频
sortWordCount = sorted(wordCount.items(), key=lambda x: x[1], reverse=True) # 去除低频词
words = [item[0] for item in sortWordCount if item[1] >= 5] vocab, wordEmbedding = self._getWordEmbedding(words)
self.wordEmbedding = wordEmbedding word2idx = dict(zip(vocab, list(range(len(vocab))))) uniqueLabel = list(set(labels))
label2idx = dict(zip(uniqueLabel, list(range(len(uniqueLabel)))))
self.labelList = list(range(len(uniqueLabel))) # 将词汇-索引映射表保存为json数据,之后做inference时直接加载来处理数据
with open("../data/wordJson/word2idx.json", "w", encoding="utf-8") as f:
json.dump(word2idx, f) with open("../data/wordJson/label2idx.json", "w", encoding="utf-8") as f:
json.dump(label2idx, f) return word2idx, label2idx def _getWordEmbedding(self, words):
"""
按照我们的数据集中的单词取出预训练好的word2vec中的词向量
""" wordVec = gensim.models.KeyedVectors.load_word2vec_format("../word2vec/word2Vec.bin", binary=True)
vocab = []
wordEmbedding = [] # 添加 "pad" 和 "UNK",
vocab.append("PAD")
vocab.append("UNK")
wordEmbedding.append(np.zeros(self._embeddingSize))
wordEmbedding.append(np.random.randn(self._embeddingSize)) for word in words:
try:
vector = wordVec.wv[word]
vocab.append(word)
wordEmbedding.append(vector)
except:
print(word + "不存在于词向量中") return vocab, np.array(wordEmbedding) def _readStopWord(self, stopWordPath):
"""
读取停用词
""" with open(stopWordPath, "r") as f:
stopWords = f.read()
stopWordList = stopWords.splitlines()
# 将停用词用列表的形式生成,之后查找停用词时会比较快
self.stopWordDict = dict(zip(stopWordList, list(range(len(stopWordList))))) def dataGen(self):
"""
初始化训练集和验证集
""" # 初始化停用词
self._readStopWord(self._stopWordSource) # 初始化数据集
reviews, labels = self._readData(self._dataSource) # 初始化词汇-索引映射表和词向量矩阵
word2idx, label2idx = self._genVocabulary(reviews, labels) # 将标签和句子数值化
labelIds = self._labelToIndex(labels, label2idx)
reviewIds = self._wordToIndex(reviews, word2idx) # 初始化训练集和测试集
trainReviews, trainLabels, evalReviews, evalLabels = self._genTrainEvalData(reviewIds, labelIds, word2idx, self._rate)
self.trainReviews = trainReviews
self.trainLabels = trainLabels self.evalReviews = evalReviews
self.evalLabels = evalLabels data = Dataset(config)
data.dataGen()
6 生成batch数据集
采用生成器的形式向模型输入batch数据集,(生成器可以避免将所有的数据加入到内存中)
# 输出batch数据集 def nextBatch(x, y, batchSize):
"""
生成batch数据集,用生成器的方式输出
""" perm = np.arange(len(x))
np.random.shuffle(perm)
x = x[perm]
y = y[perm] numBatches = len(x) // batchSize for i in range(numBatches):
start = i * batchSize
end = start + batchSize
batchX = np.array(x[start: end], dtype="int64")
batchY = np.array(y[start: end], dtype="float32") yield batchX, batchY
7 Bi-LSTM + Attention模型
# 构建模型
class BiLSTMAttention(object):
"""
Text CNN 用于文本分类
"""
def __init__(self, config, wordEmbedding): # 定义模型的输入
self.inputX = tf.placeholder(tf.int32, [None, config.sequenceLength], name="inputX")
self.inputY = tf.placeholder(tf.int32, [None], name="inputY") self.dropoutKeepProb = tf.placeholder(tf.float32, name="dropoutKeepProb") # 定义l2损失
l2Loss = tf.constant(0.0) # 词嵌入层
with tf.name_scope("embedding"): # 利用预训练的词向量初始化词嵌入矩阵
self.W = tf.Variable(tf.cast(wordEmbedding, dtype=tf.float32, name="word2vec") ,name="W")
# 利用词嵌入矩阵将输入的数据中的词转换成词向量,维度[batch_size, sequence_length, embedding_size]
self.embeddedWords = tf.nn.embedding_lookup(self.W, self.inputX) # 定义两层双向LSTM的模型结构
with tf.name_scope("Bi-LSTM"):
for idx, hiddenSize in enumerate(config.model.hiddenSizes):
with tf.name_scope("Bi-LSTM" + str(idx)):
# 定义前向LSTM结构
lstmFwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
output_keep_prob=self.dropoutKeepProb)
# 定义反向LSTM结构
lstmBwCell = tf.nn.rnn_cell.DropoutWrapper(tf.nn.rnn_cell.LSTMCell(num_units=hiddenSize, state_is_tuple=True),
output_keep_prob=self.dropoutKeepProb) # 采用动态rnn,可以动态的输入序列的长度,若没有输入,则取序列的全长
# outputs是一个元祖(output_fw, output_bw),其中两个元素的维度都是[batch_size, max_time, hidden_size],fw和bw的hidden_size一样
# self.current_state 是最终的状态,二元组(state_fw, state_bw),state_fw=[batch_size, s],s是一个元祖(h, c)
outputs_, self.current_state = tf.nn.bidirectional_dynamic_rnn(lstmFwCell, lstmBwCell,
self.embeddedWords, dtype=tf.float32,
scope="bi-lstm" + str(idx)) # 对outputs中的fw和bw的结果拼接 [batch_size, time_step, hidden_size * 2], 传入到下一层Bi-LSTM中
self.embeddedWords = tf.concat(outputs_, 2) # 将最后一层Bi-LSTM输出的结果分割成前向和后向的输出
outputs = tf.split(self.embeddedWords, 2, -1) # 在Bi-LSTM+Attention的论文中,将前向和后向的输出相加
with tf.name_scope("Attention"):
H = outputs[0] + outputs[1] # 得到Attention的输出
output = self.attention(H)
outputSize = config.model.hiddenSizes[-1] # 全连接层的输出
with tf.name_scope("output"):
outputW = tf.get_variable(
"outputW",
shape=[outputSize, config.numClasses],
initializer=tf.contrib.layers.xavier_initializer()) outputB= tf.Variable(tf.constant(0.1, shape=[config.numClasses]), name="outputB")
l2Loss += tf.nn.l2_loss(outputW)
l2Loss += tf.nn.l2_loss(outputB)
self.logits = tf.nn.xw_plus_b(output, outputW, outputB, name="logits") if config.numClasses == 1:
self.predictions = tf.cast(tf.greater_equal(self.logits, 0.0), tf.float32, name="predictions")
elif config.numClasses > 1:
self.predictions = tf.argmax(self.logits, axis=-1, name="predictions") # 计算二元交叉熵损失
with tf.name_scope("loss"): if config.numClasses == 1:
losses = tf.nn.sigmoid_cross_entropy_with_logits(logits=self.logits, labels=tf.cast(tf.reshape(self.inputY, [-1, 1]),
dtype=tf.float32))
elif config.numClasses > 1:
losses = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=self.logits, labels=self.inputY) self.loss = tf.reduce_mean(losses) + config.model.l2RegLambda * l2Loss def attention(self, H):
"""
利用Attention机制得到句子的向量表示
"""
# 获得最后一层LSTM的神经元数量
hiddenSize = config.model.hiddenSizes[-1] # 初始化一个权重向量,是可训练的参数
W = tf.Variable(tf.random_normal([hiddenSize], stddev=0.1)) # 对Bi-LSTM的输出用激活函数做非线性转换
M = tf.tanh(H) # 对W和M做矩阵运算,W=[batch_size, time_step, hidden_size],计算前做维度转换成[batch_size * time_step, hidden_size]
# newM = [batch_size, time_step, 1],每一个时间步的输出由向量转换成一个数字
newM = tf.matmul(tf.reshape(M, [-1, hiddenSize]), tf.reshape(W, [-1, 1])) # 对newM做维度转换成[batch_size, time_step]
restoreM = tf.reshape(newM, [-1, config.sequenceLength]) # 用softmax做归一化处理[batch_size, time_step]
self.alpha = tf.nn.softmax(restoreM) # 利用求得的alpha的值对H进行加权求和,用矩阵运算直接操作
r = tf.matmul(tf.transpose(H, [0, 2, 1]), tf.reshape(self.alpha, [-1, config.sequenceLength, 1])) # 将三维压缩成二维sequeezeR=[batch_size, hidden_size]
sequeezeR = tf.reshape(r, [-1, hiddenSize]) sentenceRepren = tf.tanh(sequeezeR) # 对Attention的输出可以做dropout处理
output = tf.nn.dropout(sentenceRepren, self.dropoutKeepProb) return output
8 定义计算metrics的函数
"""
定义各类性能指标
""" def mean(item: list) -> float:
"""
计算列表中元素的平均值
:param item: 列表对象
:return:
"""
res = sum(item) / len(item) if len(item) > 0 else 0
return res def accuracy(pred_y, true_y):
"""
计算二类和多类的准确率
:param pred_y: 预测结果
:param true_y: 真实结果
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y]
corr = 0
for i in range(len(pred_y)):
if pred_y[i] == true_y[i]:
corr += 1
acc = corr / len(pred_y) if len(pred_y) > 0 else 0
return acc def binary_precision(pred_y, true_y, positive=1):
"""
二类的精确率计算
:param pred_y: 预测结果
:param true_y: 真实结果
:param positive: 正例的索引表示
:return:
"""
corr = 0
pred_corr = 0
for i in range(len(pred_y)):
if pred_y[i] == positive:
pred_corr += 1
if pred_y[i] == true_y[i]:
corr += 1 prec = corr / pred_corr if pred_corr > 0 else 0
return prec def binary_recall(pred_y, true_y, positive=1):
"""
二类的召回率
:param pred_y: 预测结果
:param true_y: 真实结果
:param positive: 正例的索引表示
:return:
"""
corr = 0
true_corr = 0
for i in range(len(pred_y)):
if true_y[i] == positive:
true_corr += 1
if pred_y[i] == true_y[i]:
corr += 1 rec = corr / true_corr if true_corr > 0 else 0
return rec def binary_f_beta(pred_y, true_y, beta=1.0, positive=1):
"""
二类的f beta值
:param pred_y: 预测结果
:param true_y: 真实结果
:param beta: beta值
:param positive: 正例的索引表示
:return:
"""
precision = binary_precision(pred_y, true_y, positive)
recall = binary_recall(pred_y, true_y, positive)
try:
f_b = (1 + beta * beta) * precision * recall / (beta * beta * precision + recall)
except:
f_b = 0
return f_b def multi_precision(pred_y, true_y, labels):
"""
多类的精确率
:param pred_y: 预测结果
:param true_y: 真实结果
:param labels: 标签列表
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y] precisions = [binary_precision(pred_y, true_y, label) for label in labels]
prec = mean(precisions)
return prec def multi_recall(pred_y, true_y, labels):
"""
多类的召回率
:param pred_y: 预测结果
:param true_y: 真实结果
:param labels: 标签列表
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y] recalls = [binary_recall(pred_y, true_y, label) for label in labels]
rec = mean(recalls)
return rec def multi_f_beta(pred_y, true_y, labels, beta=1.0):
"""
多类的f beta值
:param pred_y: 预测结果
:param true_y: 真实结果
:param labels: 标签列表
:param beta: beta值
:return:
"""
if isinstance(pred_y[0], list):
pred_y = [item[0] for item in pred_y] f_betas = [binary_f_beta(pred_y, true_y, beta, label) for label in labels]
f_beta = mean(f_betas)
return f_beta def get_binary_metrics(pred_y, true_y, f_beta=1.0):
"""
得到二分类的性能指标
:param pred_y:
:param true_y:
:param f_beta:
:return:
"""
acc = accuracy(pred_y, true_y)
recall = binary_recall(pred_y, true_y)
precision = binary_precision(pred_y, true_y)
f_beta = binary_f_beta(pred_y, true_y, f_beta)
return acc, recall, precision, f_beta def get_multi_metrics(pred_y, true_y, labels, f_beta=1.0):
"""
得到多分类的性能指标
:param pred_y:
:param true_y:
:param labels:
:param f_beta:
:return:
"""
acc = accuracy(pred_y, true_y)
recall = multi_recall(pred_y, true_y, labels)
precision = multi_precision(pred_y, true_y, labels)
f_beta = multi_f_beta(pred_y, true_y, labels, f_beta)
return acc, recall, precision, f_beta
9 训练模型
在训练时,我们定义了tensorBoard的输出,并定义了两种模型保存的方法。
# 训练模型 # 生成训练集和验证集
trainReviews = data.trainReviews
trainLabels = data.trainLabels
evalReviews = data.evalReviews
evalLabels = data.evalLabels wordEmbedding = data.wordEmbedding
labelList = data.labelList # 定义计算图
with tf.Graph().as_default(): session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)
session_conf.gpu_options.allow_growth=True
session_conf.gpu_options.per_process_gpu_memory_fraction = 0.9 # 配置gpu占用率 sess = tf.Session(config=session_conf) # 定义会话
with sess.as_default():
lstm = BiLSTMAttention(config, wordEmbedding) globalStep = tf.Variable(0, name="globalStep", trainable=False)
# 定义优化函数,传入学习速率参数
optimizer = tf.train.AdamOptimizer(config.training.learningRate)
# 计算梯度,得到梯度和变量
gradsAndVars = optimizer.compute_gradients(lstm.loss)
# 将梯度应用到变量下,生成训练器
trainOp = optimizer.apply_gradients(gradsAndVars, global_step=globalStep) # 用summary绘制tensorBoard
gradSummaries = []
for g, v in gradsAndVars:
if g is not None:
tf.summary.histogram("{}/grad/hist".format(v.name), g)
tf.summary.scalar("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g)) outDir = os.path.abspath(os.path.join(os.path.curdir, "summarys"))
print("Writing to {}\n".format(outDir)) lossSummary = tf.summary.scalar("loss", lstm.loss)
summaryOp = tf.summary.merge_all() trainSummaryDir = os.path.join(outDir, "train")
trainSummaryWriter = tf.summary.FileWriter(trainSummaryDir, sess.graph) evalSummaryDir = os.path.join(outDir, "eval")
evalSummaryWriter = tf.summary.FileWriter(evalSummaryDir, sess.graph) # 初始化所有变量
saver = tf.train.Saver(tf.global_variables(), max_to_keep=5) # 保存模型的一种方式,保存为pb文件
savedModelPath = "../model/bilstm-atten/savedModel"
if os.path.exists(savedModelPath):
os.rmdir(savedModelPath)
builder = tf.saved_model.builder.SavedModelBuilder(savedModelPath) sess.run(tf.global_variables_initializer()) def trainStep(batchX, batchY):
"""
训练函数
"""
feed_dict = {
lstm.inputX: batchX,
lstm.inputY: batchY,
lstm.dropoutKeepProb: config.model.dropoutKeepProb
}
_, summary, step, loss, predictions = sess.run(
[trainOp, summaryOp, globalStep, lstm.loss, lstm.predictions],
feed_dict)
timeStr = datetime.datetime.now().isoformat() if config.numClasses == 1:
acc, recall, prec, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY) elif config.numClasses > 1:
acc, recall, prec, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY,
labels=labelList) trainSummaryWriter.add_summary(summary, step) return loss, acc, prec, recall, f_beta def devStep(batchX, batchY):
"""
验证函数
"""
feed_dict = {
lstm.inputX: batchX,
lstm.inputY: batchY,
lstm.dropoutKeepProb: 1.0
}
summary, step, loss, predictions = sess.run(
[summaryOp, globalStep, lstm.loss, lstm.predictions],
feed_dict) if config.numClasses == 1: acc, precision, recall, f_beta = get_binary_metrics(pred_y=predictions, true_y=batchY)
elif config.numClasses > 1:
acc, precision, recall, f_beta = get_multi_metrics(pred_y=predictions, true_y=batchY, labels=labelList) evalSummaryWriter.add_summary(summary, step) return loss, acc, precision, recall, f_beta for i in range(config.training.epoches):
# 训练模型
print("start training model")
for batchTrain in nextBatch(trainReviews, trainLabels, config.batchSize):
loss, acc, prec, recall, f_beta = trainStep(batchTrain[0], batchTrain[1]) currentStep = tf.train.global_step(sess, globalStep)
print("train: step: {}, loss: {}, acc: {}, recall: {}, precision: {}, f_beta: {}".format(
currentStep, loss, acc, recall, prec, f_beta))
if currentStep % config.training.evaluateEvery == 0:
print("\nEvaluation:") losses = []
accs = []
f_betas = []
precisions = []
recalls = [] for batchEval in nextBatch(evalReviews, evalLabels, config.batchSize):
loss, acc, precision, recall, f_beta = devStep(batchEval[0], batchEval[1])
losses.append(loss)
accs.append(acc)
f_betas.append(f_beta)
precisions.append(precision)
recalls.append(recall) time_str = datetime.datetime.now().isoformat()
print("{}, step: {}, loss: {}, acc: {},precision: {}, recall: {}, f_beta: {}".format(time_str, currentStep, mean(losses),
mean(accs), mean(precisions),
mean(recalls), mean(f_betas))) if currentStep % config.training.checkpointEvery == 0:
# 保存模型的另一种方法,保存checkpoint文件
path = saver.save(sess, "../model/Bi-LSTM-atten/model/my-model", global_step=currentStep)
print("Saved model checkpoint to {}\n".format(path)) inputs = {"inputX": tf.saved_model.utils.build_tensor_info(lstm.inputX),
"keepProb": tf.saved_model.utils.build_tensor_info(lstm.dropoutKeepProb)} outputs = {"predictions": tf.saved_model.utils.build_tensor_info(lstm.binaryPreds)} prediction_signature = tf.saved_model.signature_def_utils.build_signature_def(inputs=inputs, outputs=outputs,
method_name=tf.saved_model.signature_constants.PREDICT_METHOD_NAME)
legacy_init_op = tf.group(tf.tables_initializer(), name="legacy_init_op")
builder.add_meta_graph_and_variables(sess, [tf.saved_model.tag_constants.SERVING],
signature_def_map={"predict": prediction_signature}, legacy_init_op=legacy_init_op) builder.save()
10 预测代码
x = "this movie is full of references like mad max ii the wild one and many others the ladybug´s face it´s a clear reference or tribute to peter lorre this movie is a masterpiece we´ll talk much more about in the future" # 注:下面两个词典要保证和当前加载的模型对应的词典是一致的
with open("../data/wordJson/word2idx.json", "r", encoding="utf-8") as f:
word2idx = json.load(f) with open("../data/wordJson/label2idx.json", "r", encoding="utf-8") as f:
label2idx = json.load(f)
idx2label = {value: key for key, value in label2idx.items()} xIds = [word2idx.get(item, word2idx["UNK"]) for item in x.split(" ")]
if len(xIds) >= config.sequenceLength:
xIds = xIds[:config.sequenceLength]
else:
xIds = xIds + [word2idx["PAD"]] * (config.sequenceLength - len(xIds)) graph = tf.Graph()
with graph.as_default():
gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.333)
session_conf = tf.ConfigProto(allow_soft_placement=True, log_device_placement=False, gpu_options=gpu_options)
sess = tf.Session(config=session_conf) with sess.as_default():
checkpoint_file = tf.train.latest_checkpoint("../model/Bi-LSTM-atten/model/")
saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file))
saver.restore(sess, checkpoint_file) # 获得需要喂给模型的参数,输出的结果依赖的输入值
inputX = graph.get_operation_by_name("inputX").outputs[0]
dropoutKeepProb = graph.get_operation_by_name("dropoutKeepProb").outputs[0] # 获得输出的结果
predictions = graph.get_tensor_by_name("output/predictions:0") pred = sess.run(predictions, feed_dict={inputX: [xIds], dropoutKeepProb: 1.0})[0] pred = [idx2label[item] for item in pred]
print(pred)
文本分类实战(五)—— Bi-LSTM + Attention模型的更多相关文章
- 文本分类实战(八)—— Transformer模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(六)—— RCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(四)—— Bi-LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(三)—— charCNN模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(二)—— textCNN 模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(七)—— Adversarial LSTM模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(十)—— BERT 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- 文本分类实战(九)—— ELMO 预训练模型
1 大纲概述 文本分类这个系列将会有十篇左右,包括基于word2vec预训练的文本分类,与及基于最新的预训练模型(ELMo,BERT等)的文本分类.总共有以下系列: word2vec预训练词向量 te ...
- Python 1行代码实现文本分类(实战笔记),含代码详细说明及运行结果
Python 1行代码实现文本分类(实战笔记),含代码详细说明及运行结果 一.详细说明及代码 tc.py =============================================== ...
随机推荐
- 深入理解Spring IOC工作原理
为什么会出现spring,spring出现解决了什么问题? 1.分析普通多层架构存在的问题 JSP->Servlet->Service->Dao 层与层之间的依赖很强,属于耦合而且是 ...
- Linux~其实shell脚本也很简单
用了两个的centos之后,也想看看它的脚本,我们知道shell这个东西就像windows里的批处理,它可以将一些语句进行组合,然后统一去执行,感觉挺方便的. shell文件的组成 shell语言环境 ...
- 【Python3爬虫】猫眼电影爬虫(破解字符集反爬)
一.页面分析 首先打开猫眼电影,然后点击一个正在热播的电影(比如:毒液).打开开发者工具,点击左上角的箭头,然后用鼠标点击网页上的票价,可以看到源码中显示的不是数字,而是某些根本看不懂的字符,这是因为 ...
- Python编写守护进程程序
Python编写守护进程程序思路 1. fork子进程,父进程退出通常,我们执行服务端程序的时候都会通过终端连接到服务器,成功连接后会加载shell环境,终端和shell都是进程,shell进程是终端 ...
- C语言实现邻接矩阵创建无向图&图的深度优先遍历
/* '邻接矩阵' 实现无向图的创建.深度优先遍历*/ #include <stdio.h> #include <stdlib.h> #define MaxVex 100 // ...
- Nagios 监控系统架构
Nagios 监控系统架设全攻略 简介: Nagios 全名为(Nagios Ain’t Goona Insist on Saintood),最初项目名字是 NetSaint.它是一款免费的开源 IT ...
- Docker最全教程——从理论到实战(一)
容器是应用走向云端之后必然的发展趋势,因此笔者非常乐于和大家分享我们这段时间对容器的理解.心得和实践. 本篇教程持续编写了2个星期左右,只是为了大家更好地了解.理解和消化这个技术,能够搭上这波车. 你 ...
- [五] JavaIO之InputStream OutputStream简介 方法列表说明
InputStream 和 OutputStream 对于字节流的输入和输出 是作为协议的存在 所以有必要了解下这两个类提供出来的基本约定 这两个类是抽象类,而且基本上没什么实现,都是依赖于子类具 ...
- Lambda表达式资料整理
重温委托,匿名方法,Lambda,泛型委托,表达式树 第一:委托 有些教材,博客说到委托都会提到事件,虽然事件是委托的一个实例,但是为了理解起来更简单,今天只谈委托不谈事件.先上一段代码: 下边的 ...
- js报错:Uncaught SyntaxError: Unexpected string
一.问题 今天在写jsp页面时,发现加上某段代码后,页面的其它js就失效了,死活出不来,然后打开谷歌浏览器发现,页面js报如下错误: Uncaught SyntaxError: Unexpected ...