首先推荐一个写的很好的题解,个人水平有限只能写流水账,还请见谅。

经典的最小割模型,很多人都说这个题是水题,但我还是被卡了=_=

技巧:加边表示限制

在没有距离\(<=d\)的限制时候,我们对每个竖轴连一条完整的边跑最小割即可(效果和取\(min\)是一样的)。但是现在需要加入这个限制,我们就要考虑加边。

原条件:\(|x - y| <= d\)

转化为:\(x - y <= d\) 且 \(y - x <= d\)

我们考虑对每一个不等式单独处理,实际上可以转化为:

对于每一个\(x\),和它四联通的所有\(y\)都满足\(y >= x - d\)。

这个不等式的限制如何满足?我们考虑添加\(x_h -> y_{h - d}\)。比如如果\(d\)是\(2\)的话:

图中如果可以在在\(x\)上和\(y\)上割掉两条边,那么一定有\(y >= x - 2\),因为割掉\(y < x - 2\)的边并不能完全割断原图,所以没有意义。

那么我们就对每个\(x\)向其四联通的位置这样连边就可以了。

#include <bits/stdc++.h>
using namespace std; const int N = 200010;
const int M = 400010;
const int INF = 0x3f3f3f3f; int n, m, h, d, cnt = -1, head[N];
int mv[4][2] = {{1, 0}, {-1, 0}, {0, 1}, {0, -1}}; struct edge {int nxt, to, f;}e[M]; void add_len (int u, int v, int f) {
e[++cnt] = (edge) {head[u], v, f}; head[u] = cnt;
e[++cnt] = (edge) {head[v], u, 0}; head[v] = cnt;
} bool in_map (int x, int y, int z) {
return 1 <= x && x <= n && 1 <= y && y <= m && 1 <= z && z <= h;
} int inn (int x, int y, int z) {return n * m * h * 0 + (x - 1) * m * h + (y - 1) * h + z;}
int out (int x, int y, int z) {return n * m * h * 1 + (x - 1) * m * h + (y - 1) * h + z;} queue <int> q;
int cur[N], deep[N]; bool bfs (int s, int t) {
memcpy (cur, head, sizeof (head));
memset (deep, 0x3f, sizeof (deep));
q.push (s); deep[s] = 0;
while (!q.empty ()) {
int u = q.front (); q.pop ();
for (int i = head[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == INF && e[i].f) {
deep[v] = deep[u] + 1;
q.push (v);
}
}
}
return deep[t] != INF;
} int dfs (int u, int t, int lim) {
if (u == t || !lim) {
return lim;
}
int tmp = 0, flow = 0;
for (int &i = cur[u]; ~i; i = e[i].nxt) {
int v = e[i].to;
if (deep[v] == deep[u] + 1) {
tmp = dfs (v, t, min (lim, e[i].f));
lim -= tmp;
flow += tmp;
e[i ^ 0].f -= tmp;
e[i ^ 1].f += tmp;
if (!lim) break;
}
}
return flow;
} int Dinic (int s, int t) {
int min_cut = 0;
while (bfs (s, t)) {
min_cut += dfs (s, t, INF);
}
return min_cut;
} int main () {
memset (head, -1, sizeof (head));
cin >> n >> m >> h >> d;
int s = n * m * h * 2 + 1;
int t = n * m * h * 2 + 2;
int _val = 0;
for (int z = 1; z <= h; ++z) {
for (int x = 1; x <= n; ++x) {
for (int y = 1; y <= m; ++y) {
cin >> _val;
add_len (inn (x, y, z), out (x, y, z), _val);
if (in_map (x, y, z + 1)) {
add_len (out (x, y, z), inn (x, y, z + 1), INF);
}
for (int i = 0; i < 4; ++i) {
int tx = x + mv[i][0];
int ty = y + mv[i][1];
if (in_map (tx, ty, z - d)) {
add_len (out (x, y, z), inn (tx, ty, z - d), INF);
}
}
}
}
}
for (int x = 1; x <= n; ++x) {
for (int y = 1; y <= m; ++y) {
add_len (s, inn (x, y, 1), INF);
add_len (out (x, y, h), t, INF);
}
}
cout << Dinic (s, t) << endl;
}

Luogu P3227 [HNOI2013]切糕 最小割的更多相关文章

  1. bzoj3144 [HNOI2013]切糕(最小割)

    bzoj3144 [HNOI2013]切糕(最小割) bzoj Luogu 题面描述见上 题解时间 一开始我真就把这玩意所说的切面当成了平面来做的 事实上只是说相邻的切点高度差都不超过 $ d $ 对 ...

  2. bzoj 3144: [Hnoi2013]切糕 最小割

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 681  Solved: 375[Submit][Status] ...

  3. 【BZOJ3144】[Hnoi2013]切糕 最小割

    [BZOJ3144][Hnoi2013]切糕 Description Input 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q ...

  4. BZOJ3144[Hnoi2013]切糕——最小割

    题目描述 输入 第一行是三个正整数P,Q,R,表示切糕的长P. 宽Q.高R.第二行有一个非负整数D,表示光滑性要求.接下来是R个P行Q列的矩阵,第z个 矩阵的第x行第y列是v(x,y,z) (1≤x≤ ...

  5. Luogu P3227 [HNOI2013]切糕

    %%ZZKdalao上课讲的题目,才知道网络流的这种玄学建模 我们先想一想,如果没有D的限制,那么想当于再每一根纵轴上选一个权值最小的点再加起来 我们对应在网络流上就是每一根纵轴上的点向它下方的点用权 ...

  6. bzoj 3144 [Hnoi2013]切糕——最小割

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3144 一根纵轴上切一个点,可以把一根纵轴上的点连成一串来体现.自己的写法是每个点连向前一个点 ...

  7. 洛谷 P3227 [HNOI2013]切糕(最小割)

    题解 Dinic求最小割 题目其实就是求最小的代价使得每个纵轴被分成两部分 最小割!!! 我们把每个点抽象成一条边,一个纵轴就是一条\(S-T\)的路径 但是题目要求\(|f(x,y)-f(x',y' ...

  8. BZOJ3144/LG3227 「HNOI2013」切糕 最小割离散变量模型

    问题描述 BZOJ3144 LG3227 还想粘下样例 输入: 2 2 2 1 6 1 6 1 2 6 2 6 输出: 6 题解 关于离散变量模型,我不想再抄一遍,所以: 对于样例,可以建立出这样的图 ...

  9. 【BZOJ-3144】切糕 最小割-最大流

    3144: [Hnoi2013]切糕 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1261  Solved: 700[Submit][Status] ...

随机推荐

  1. iOS transform属性的使用

    1.transform属性 在iOS开发中,通过transform属性可以修改UIView对象的平移.缩放比例和旋转角度,常用的创建transform结构体方法分两大类 (1) 创建“基于控件初始位置 ...

  2. jsp 简单下载

    <%@ page language="java" import="java.util.*" contentType="text/html;cha ...

  3. SQLServer之创建唯一聚集索引

    创建唯一聚集索引典型实现 唯一索引可通过以下方式实现: PRIMARY KEY 或 UNIQUE 约束 在创建 PRIMARY KEY 约束时,如果不存在该表的聚集索引且未指定唯一非聚集索引,则将自动 ...

  4. css3新特性合集

    转自:https://www.cnblogs.com/xiaoxie2016/p/5964694.html (若原作者对此转载有疑问,联系删除,谢谢!) animation    IE10 anima ...

  5. 安装mysql的踩坑之旅

    近期的一个项目要求用mysql数据库,正好系统重装了,复习下mysql的安装,哪成想是踩了无数坑啊! 要安装首先自然是火速进官网下个安装包(下载地址https://dev.mysql.com/down ...

  6. Python爬虫【解析库之pyquery】

    该库跟jQuery的使用方法基本一样  http://pyquery.readthedocs.io/ 官方文档 解析库的安装 pip3 install pyquery 初始化 1.字符串初始化 htm ...

  7. springboot项目

    https://my.oschina.net/ityouknow/blog/1629066

  8. (十一)Updating Documents

    In addition to being able to index and replace documents, we can also update documents. Note though ...

  9. Python两大佬互相撕逼 技术何苦为难技术?

    最近两天 Python 圈发生了一件大事,两个 Python 大佬撕逼了起来了. 不,其实是一个大佬(刘志军)被怼. 事情是这样的. 背景 人物介绍: 董明伟:公众号「Python 之美」的作者,似乎 ...

  10. UIGestureRecognizer - BNR

    继续上篇UITouch - BNR.该篇将实现线条选择.移动和删除操作. UIGestureRecognizer有一系列子类,每一个子类都用于识别特定的手势.当识别出一个手势时,手势识别器会拦截视图的 ...